login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101467
Number of distinct n-term ratios x_1 : x_2 : ... : x_n where each x_i is in the range [1-10].
1
10, 63, 841, 9279, 96601, 983583, 9919561, 99602559, 998026681, 9990174303, 99950992681, 999755323839, 9998777694361, 99993891685023, 999969468040201, 9999847368997119, 99999236931275641, 999996184915051743, 9999980925350886121, 99999904629080526399
OFFSET
1,1
COMMENTS
Number of elements of {1,...,10}^n with gcd 1. - Robert Israel, Nov 28 2014
FORMULA
a(1) = 10; for n>1, a(n) = 10^n - 5^n - 3^n - 2^n + 1.
G.f.: x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10) / ((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Nov 28 2014
a(n+4) = -300*a(n)+340*a(n+1)-131*a(n+2)+20*a(n+3)+72 for n >= 2. - Robert Israel, Dec 02 2014
a(n) = 21*a(n-1) - 151*a(n-2) + 471*a(n-3) - 640*a(n-4) + 300*a(n-5) for n > 6. - Chai Wah Wu, Apr 15 2021
EXAMPLE
For n=2: Consider the ratios 1:1, 1:2, ..., 1:10, 2:1, 2:2, ..., 2:10, ..., 10:1, 10:2, ..., 10:10. We get 63 different ratios from the 100 numbers list above after removing duplication. So a(2) = 63, and this is A018805(10).
MAPLE
1, seq(10^n - 5^n - 3^n - 2^n + 1, n=2..20); # Robert Israel, Nov 28 2014
PROG
(PARI) Vec(x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Nov 28 2014
CROSSREFS
Cf. A018805 (2 terms), A071778 (3 terms), A082540 (4 terms), A082544 (5 terms).
Sequence in context: A271754 A075755 A046638 * A162473 A138661 A341681
KEYWORD
nonn,easy
AUTHOR
Su Jianning (sujianning(AT)yahoo.com.cn), Jan 21 2005
STATUS
approved