The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101467 Number of distinct n-term ratios x_1 : x_2 : ... : x_n where each x_i is in the range [1-10]. 1
 10, 63, 841, 9279, 96601, 983583, 9919561, 99602559, 998026681, 9990174303, 99950992681, 999755323839, 9998777694361, 99993891685023, 999969468040201, 9999847368997119, 99999236931275641, 999996184915051743, 9999980925350886121, 99999904629080526399 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of elements of {1,...,10}^n with gcd 1. - Robert Israel, Nov 28 2014 LINKS Colin Barker, Table of n, a(n) for n = 1..999 Index entries for linear recurrences with constant coefficients, signature (21,-151,471,-640,300). FORMULA a(1) = 10; for n>1, a(n) = 10^n - 5^n - 3^n - 2^n + 1. G.f.: x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10) / ((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Nov 28 2014 a(n+4) = -300*a(n)+340*a(n+1)-131*a(n+2)+20*a(n+3)+72 for n >= 2. - Robert Israel, Dec 02 2014 a(n) = 21*a(n-1) - 151*a(n-2) + 471*a(n-3) - 640*a(n-4) + 300*a(n-5) for n > 6. - Chai Wah Wu, Apr 15 2021 EXAMPLE For n=2: Consider the ratios 1:1, 1:2, ..., 1:10, 2:1, 2:2, ..., 2:10, ..., 10:1, 10:2, ..., 10:10. We get 63 different ratios from the 100 numbers list above after removing duplication. So a(2) = 63, and this is A018805(10). MAPLE 1, seq(10^n - 5^n - 3^n - 2^n + 1, n=2..20); # Robert Israel, Nov 28 2014 PROG (PARI) Vec(x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Nov 28 2014 CROSSREFS Cf. A018805 (2 terms), A071778 (3 terms), A082540 (4 terms), A082544 (5 terms). Sequence in context: A271754 A075755 A046638 * A162473 A138661 A341681 Adjacent sequences: A101464 A101465 A101466 * A101468 A101469 A101470 KEYWORD nonn,easy AUTHOR Su Jianning (sujianning(AT)yahoo.com.cn), Jan 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 08:12 EDT 2024. Contains 373492 sequences. (Running on oeis4.)