login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082540
Number of ordered quadruples (a,b,c,d) with gcd(a,b,c,d)=1 (1 <= {a,b,c,d} <= n).
15
1, 15, 79, 239, 607, 1199, 2303, 3823, 6223, 9279, 13919, 19183, 27007, 35743, 47519, 60735, 78719, 97103, 122447, 148527, 181839, 216959, 262543, 306863, 365343, 423855, 495855, 569055, 661679, 748527, 862047, 972191, 1104831, 1237247
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^4.
a(n) is asymptotic to c*n^4 with c=0.92393....
Lim_{n->infinity} a(n)/n^4 = 1/zeta(4) = A215267 = 90/Pi^4. - Karl-Heinz Hofmann, Apr 11 2021
Lim_{n->infinity} n^4/a(n) = zeta(4) = A013662 = Pi^4/90. - Karl-Heinz Hofmann, Apr 11 2021
a(n) = n^4 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024
PROG
(PARI) a(n)=sum(k=1, n, moebius(k)*floor(n/k)^4)
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A082540(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A082540(k1)
j, k1 = j2, n//j2
return n*(n**3-1)-c+j # Chai Wah Wu, Mar 29 2021
CROSSREFS
Column k=4 of A344527.
Cf. A015634.
Sequence in context: A044583 A212746 A212741 * A372952 A269657 A189922
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 11 2003
STATUS
approved