login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344527
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of ordered k-tuples (x_1, x_2, ..., x_k) with gcd(x_1, x_2, ..., x_k) = 1 (1 <= {x_1, x_2, ..., x_k} <= n).
7
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 11, 1, 1, 31, 79, 55, 19, 1, 1, 63, 241, 239, 115, 23, 1, 1, 127, 727, 991, 607, 181, 35, 1, 1, 255, 2185, 4031, 3091, 1199, 307, 43, 1, 1, 511, 6559, 16255, 15559, 7501, 2303, 439, 55, 1, 1, 1023, 19681, 65279, 77995, 45863, 16531, 3823, 637, 63, 1
OFFSET
1,5
LINKS
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{i>=1} mu(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^k.
T(n,k) = Sum_{j=1..n} mu(j) * floor(n/j)^k.
T(n,k) = n^k - Sum_{j=2..n} T(floor(n/j),k).
EXAMPLE
G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} mu(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 7, 15, 31, 63, ...
1, 7, 25, 79, 241, 727, ...
1, 11, 55, 239, 991, 4031, ...
1, 19, 115, 607, 3091, 15559, ...
1, 23, 181, 1199, 7501, 45863, ...
MATHEMATICA
T[n_, k_] := Sum[MoebiusMu[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, moebius(j)*(n\j)^k);
(PARI) T(n, k) = n^k-sum(j=2, n, T(n\j, k));
(Python)
from functools import lru_cache
from itertools import count, islice
@lru_cache(maxsize=None)
def A344527_T(n, k):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A344527_T(k1, k)
j, k1 = j2, n//j2
return n*(n**(k-1)-1)-c+j
def A344527_gen(): # generator of terms
return (A344527_T(k+1, n-k) for n in count(1) for k in range(n))
A344527_list = list(islice(A344527_gen(), 30)) # Chai Wah Wu, Nov 02 2023
CROSSREFS
Columns k=1..6 give A000012, A018805, A071778, A082540, A082544, A343978.
T(n,n) gives A332468.
Sequence in context: A157836 A205497 A063394 * A193871 A108470 A328300
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 22 2021
STATUS
approved