login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343510
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.
14
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
OFFSET
1,3
FORMULA
G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * d^k.
T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d).
Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - Richard L. Ollerton, May 10 2021
T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - Peter Bala, Jan 29 2024
EXAMPLE
G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, 129, ...
5, 11, 29, 83, 245, 731, 2189, ...
8, 22, 74, 274, 1058, 4162, 16514, ...
9, 29, 129, 629, 3129, 15629, 78129, ...
15, 55, 261, 1411, 8085, 47515, 282381, ...
13, 55, 349, 2407, 16813, 117655, 823549, ...
MATHEMATICA
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, gcd(j, n)^k);
(PARI) T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
(PARI) T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));
CROSSREFS
Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509.
T(n-2,n) gives A342432.
T(n-1,n) gives A342433.
T(n,n) gives A332517.
T(n,n+1) gives A321294.
Sequence in context: A209159 A182397 A376102 * A344725 A209560 A211977
KEYWORD
nonn,tabl,easy
AUTHOR
Seiichi Manyama, Apr 17 2021
STATUS
approved