login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332517
a(n) = Sum_{k=1..n} gcd(n,k)^n.
16
1, 5, 29, 274, 3129, 47515, 823549, 16843268, 387459861, 10009769725, 285311670621, 8918311856102, 302875106592265, 11112685048729175, 437893951473411261, 18447025557276459016, 827240261886336764193, 39346558373052524325225, 1978419655660313589123997
OFFSET
1,2
COMMENTS
If n is prime, a(n) = n-1 + n^n. - Robert Israel, Feb 16 2020
LINKS
FORMULA
a(n) = Sum_{d|n} phi(n/d) * d^n.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_(n-1)(d).
a(n) ~ n^n.
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} (n/gcd(n,k))^n*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k)*sigma_(n-1)(gcd(n,k))/phi(n/gcd(n,k)). (End)
MAPLE
f:= n -> add(igcd(n, k)^n, k=1..n):
map(f, [$1..30]); # Robert Israel, Feb 16 2020
MATHEMATICA
Table[Sum[GCD[n, k]^n, {k, 1, n}], {n, 1, 19}]
Table[Sum[EulerPhi[n/d] d^n, {d, Divisors[n]}], {n, 1, 19}]
Table[Sum[MoebiusMu[n/d] d DivisorSigma[n - 1, d], {d, Divisors[n]}], {n, 1, 19}]
PROG
(PARI) a(n) = sum(k=1, n, gcd(n, k)^n); \\ Michel Marcus, Feb 14 2020
(Magma) [&+[Gcd(n, k)^n:k in [1..n]]: n in [1..20]]; // Marius A. Burtea, Feb 15 2020
(Python)
from sympy import totient, divisors
def A332517(n):
return sum(totient(d)*(n//d)**n for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 15 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 14 2020
STATUS
approved