login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321294
a(n) = Sum_{d|n} mu(n/d)*d*sigma_n(d).
3
1, 9, 83, 1058, 15629, 282381, 5764807, 134480900, 3486902505, 100048836321, 3138428376731, 107006403495850, 3937376385699301, 155572843119518781, 6568408661060858767, 295150157013526773768, 14063084452067724991025, 708236697425777157039381
OFFSET
1,2
LINKS
FORMULA
a(n) = [x^n] Sum_{i>=1} Sum_{j>=1} mu(i)*j^(n+1)*x^(i*j)/(1 - x^(i*j))^2.
a(n) = Sum_{d|n} phi(n/d)*d^(n+1).
a(n) = Sum_{k=1..n} gcd(n,k)^(n+1).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Nov 02 2018
MATHEMATICA
Table[Sum[MoebiusMu[n/d] d DivisorSigma[n, d], {d, Divisors[n]}], {n, 18}]
Table[Sum[EulerPhi[n/d] d^(n + 1), {d, Divisors[n]}], {n, 18}]
Table[Sum[GCD[n, k]^(n + 1), {k, n}], {n, 18}]
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n)); \\ Michel Marcus, Nov 03 2018
(Python)
from sympy import totient, divisors
def A321294(n):
return sum(totient(d)*(n//d)**(n+1) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 15 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 02 2018
STATUS
approved