login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320940
a(n) = Sum_{d|n} d*sigma_n(d).
4
1, 11, 85, 1127, 15631, 287021, 5764809, 135007759, 3487020610, 100146496681, 3138428376733, 107032667155169, 3937376385699303, 155582338242604221, 6568408966322733475, 295154660699054931999, 14063084452067724991027, 708239400347943609329270
OFFSET
1,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = n * [x^n] -log(Product_{k>=1} (1 - x^k)^sigma_n(k)).
a(n) = Sum_{d|n} d^(n+1)*sigma_1(n/d).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Feb 16 2020
EXAMPLE
a(6) = 1*sigma_6(1)+2*sigma_6(2)+3*sigma_6(3)+6*sigma_6(6) = 1+2*65+3*730+6*47450 = 287021.
MAPLE
with(numtheory): seq(coeff(series(n*(-log(mul((1-x^k)^sigma[n](k), k=1..n))), x, n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
Table[Sum[d DivisorSigma[n, d], {d, Divisors[n]}] , {n, 18}]
Table[n SeriesCoefficient[-Log[Product[(1 - x^k)^DivisorSigma[n, k], {k, 1, n}]], {x, 0, n}], {n, 18}]
PROG
(PARI) a(n) = sumdiv(n, d, d*sigma(d, n)); \\ Michel Marcus, Oct 28 2018
(Python)
from sympy import divisor_sigma, divisors
def A320940(n):
return sum(divisor_sigma(d)*(n//d)**(n+1) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 15 2020
(Magma) [&+[d*DivisorSigma(n, d):d in Divisors(n)]:n in [1..18]]; // Marius A. Burtea, Feb 15 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 28 2018
STATUS
approved