login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129180
Total area below all Schroeder paths of semilength n.
2
0, 1, 11, 85, 583, 3785, 23843, 147437, 900559, 5453457, 32816315, 196531781, 1172634391, 6976059865, 41401814099, 245230349021, 1450162049695, 8563622372129, 50510963880299, 297627067200821, 1752169739791591, 10307304302433513, 60592569330907523
OFFSET
0,3
COMMENTS
A Schroeder path of semilength n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis.
LINKS
Lara Bossinger, Martina Lanini, Following Schubert varieties under Feigin's degeneration of the flag variety, arXiv:1802.04320 [math.RT], 2018.
FORMULA
a(n) = Sum_{k=0..n^2} k * A129179(n,k).
G.f.: (1+z)[1-z-sqrt(1-6z+z^2)]^2/[4z(1-6z+z^2)] (obtained by computing (dG/dt)_{t=1} where G=G(t,z) is defined by G(t,z)=1+zG(t,z)+tzG(t,t^2*z)G(t,z); see A129179).
a(n) = Sum_{k=0..n} (A002315(k)*Sum_{i=0..n-k+1} (binomial(n+1-k,i+2)*binomial(n-k+i,i)))/(n-k+1)). - Vladimir Kruchinin, Mar 02 2016
a(n) ~ 1/2 * (1+sqrt(2))^(2*n+1). - Vaclav Kotesovec, Mar 03 2016
D-finite with recurrence -(n+1)*(2*n-5)*a(n) +3*(4*n+1)*(2*n-5)*a(n-1) +(-76*n^2+228*n-89)*a(n-2) +3*(2*n-1)*(4*n-13)*a(n-3) -(2*n-1)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2) = 11 because the areas below the Schroeder paths HH, HUD, UDH, UDUD, UHD and UUDD are 0,1,1,2,3 and 4, respectively.
MAPLE
g:=(1+z)*(1-z-sqrt(1-6*z+z^2))^2/4/z/(1-6*z+z^2): gser:=series(g, z=0, 30): seq(coeff(gser, z, n), n=0..24);
MATHEMATICA
CoefficientList[Series[(1 + x)*(1 - x - Sqrt[1 - 6*x + x^2])^2/(4*x*(1 - 6*x + x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 03 2016 *)
PROG
(Maxima)
a(n):=sum((((sqrt(2)+1)^(2*k+1)-(1-sqrt(2))^(2*k)*sqrt(2)+(1-sqrt(2))^(2*k))*sum(binomial(n+1-k, i+2)*binomial(n-k+i, i), i, 0, n-k+1))/(n-k+1), k, 0, n); /* Vladimir Kruchinin, Mar 02 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 08 2007
STATUS
approved