The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129181 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n such that the area between the x-axis and the path is k (n>=0; 0<=k<=floor(n^2/4)). 4
 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 3, 2, 1, 1, 5, 10, 10, 8, 7, 5, 3, 1, 1, 1, 6, 15, 20, 19, 18, 16, 12, 8, 6, 3, 2, 1, 1, 7, 21, 35, 40, 41, 41, 36, 29, 23, 18, 12, 9, 5, 3, 1, 1, 1, 8, 28, 56, 76, 86, 93, 92, 83, 72, 62, 50, 40, 30, 22, 14, 10, 6, 3, 2, 1, 1, 9, 36, 84, 133, 168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Row n has 1+floor(n^2/4) terms. Row sums are the Motzkin numbers (A001006). LINKS Alois P. Heinz, Rows n = 0..50, flattened Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8. Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Consecutive patterns in restricted permutations and involutions, arXiv:1902.02213 [math.CO], 2019. A. Bärtschi, B. Geissmann, D. Graf, T. Hruz, P. Penna, and T. Tschager, On computing the total displacement number via weighted Motzkin paths, arXiv:1606.05538 [cs.DS], 2016. Thomas Grubb and Frederick Rajasekaran, Set Partition Patterns and the Dimension Index, arXiv:2009.00650 [math.CO], 2020. Mentions this sequence. FORMULA G.f. G(t,z) satisfies G(t,z) = 1 + z*G(t,z) + t*z^2*G(t,t*z)*G(t,z). Sum_{k>=0} k * T(n,k) = A057585(n). EXAMPLE T(5,3)=4 because we have LULLD, ULLDL, UDULD and ULDUD, where U=(1,1), L=(1,0) and D=(1,-1). Triangle starts: 00: 1; 01: 1; 02: 1,1; 03: 1,2,1; 04: 1,3,3,1,1; 05: 1,4,6,4,3,2,1; 06: 1,5,10,10,8,7,5,3,1,1; ... From Joerg Arndt, Apr 19 2014: (Start) Row n=5 corresponds to the following Motzkin paths (dots denote zeros): # :   height in path   area    step in path 01:  [ . . . . . . ]     0     0 0 0 0 0 02:  [ . . . . 1 . ]     1     0 0 0 + - 03:  [ . . . 1 . . ]     1     0 0 + - 0 04:  [ . . . 1 1 . ]     2     0 0 + 0 - 05:  [ . . 1 . . . ]     1     0 + - 0 0 06:  [ . . 1 . 1 . ]     2     0 + - + - 07:  [ . . 1 1 . . ]     2     0 + 0 - 0 08:  [ . . 1 1 1 . ]     3     0 + 0 0 - 09:  [ . . 1 2 1 . ]     4     0 + + - - 10:  [ . 1 . . . . ]     1     + - 0 0 0 11:  [ . 1 . . 1 . ]     2     + - 0 + - 12:  [ . 1 . 1 . . ]     2     + - + - 0 13:  [ . 1 . 1 1 . ]     3     + - + 0 - 14:  [ . 1 1 . . . ]     2     + 0 - 0 0 15:  [ . 1 1 . 1 . ]     3     + 0 - + - 16:  [ . 1 1 1 . . ]     3     + 0 0 - 0 17:  [ . 1 1 1 1 . ]     4     + 0 0 0 - 18:  [ . 1 1 2 1 . ]     5     + 0 + - - 19:  [ . 1 2 1 . . ]     4     + + - - 0 20:  [ . 1 2 1 1 . ]     5     + + - 0 - 21:  [ . 1 2 2 1 . ]     6     + + 0 - - (End) MAPLE G:=1/(1-z-t*z^2*g[1]): for i from 1 to 13 do g[i]:=1/(1-t^i*z-t^(2*i+1)*z^2*g[i+1]) od: g[14]:=0: Gser:=simplify(series(G, z=0, 13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 10 do seq(coeff(P[n], t, j), j=0..floor(n^2/4)) od; # yields sequence in triangular form # second Maple program b:= proc(x, y, k) option remember;       `if`(x<0 or xx^2, 0,       `if`(x=0, 1, add(b(x-1, y+i, k-y-i/2), i=-1..1)))     end: T:= (n, k)-> b(n, 0, k): seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..12); # Alois P. Heinz, Jun 28 2012 MATHEMATICA b[x_, y_, k_] := b[x, y, k] = If[x<0 || xx^2, 0, If[x==0, 1, Sum[b[x-1, y+i, k-y-i/2], {i, -1, 1}]]]; T[n_, k_] := b[n, 0, k]; Table[Table[ T[n, k], {k, 0, Floor[n^2/4]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *) CROSSREFS Cf. A001006, A057585. Sequence in context: A090402 A026082 A117185 * A157694 A271187 A093557 Adjacent sequences:  A129178 A129179 A129180 * A129182 A129183 A129184 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Apr 08 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 06:24 EDT 2021. Contains 345358 sequences. (Running on oeis4.)