login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129178 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that invc(p)=k (n >= 0; 0 <= k <= (n-1)(n-2)/2) (see comment for invc definition). 5
1, 1, 2, 4, 2, 8, 8, 6, 2, 16, 24, 28, 26, 16, 8, 2, 32, 64, 96, 120, 126, 110, 82, 52, 26, 10, 2, 64, 160, 288, 432, 564, 658, 680, 638, 542, 416, 284, 172, 90, 38, 12, 2, 128, 384, 800, 1376, 2072, 2824, 3526, 4058, 4344, 4346, 4066, 3562, 2912, 2218, 1566, 1016, 598 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
invc(p) is defined (by Carlitz) in the following way: express p in standard cycle form (i.e., cycles ordered by increasing smallest elements with each cycle written with its smallest element in the first position), then remove the parentheses and count the inversions in the obtained word.
Row n has 1+(n-1)*(n-2)/2 - delta_{0,n} terms. Row sums are the factorials (A000142). T(n,0) = 2^(n-1) = A011782(n) = A000079(n-1). T(n,1) = (n-2)*2^(n-2) = A036289(n-2) for n>=2. T(n,k) = A121552(n,n+k).
It appears that Sum_{k>=0} k*T(n,k) = A126673(n).
REFERENCES
L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, 1968, 1-7.
LINKS
Toufik Mansour, Mark Shattuck, A q-analog of the hyperharmonic numbers, Afrika Matematika 25.1 (2014): 147-160.
M. Shattuck, Parity theorems for statistics on permutations and Catalan words, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5, Paper A07, 2005.
FORMULA
Generating polynomial of row n is P[n](t) = 2*(2+t)*(2+t+t^2)*...*(2 + t + t^2 + ... + t^(n-2)) for n >= 3, P[1](t)=1, P[2](t)=2.
EXAMPLE
T(3,0)=4, T(3,1)=2 because we have 123=(1)(2)(3), 132=(1)(23), 213=(12)(3), 231=(123) with the resulting word (namely 123) having 0 inversions and 312=(132) and (321)=(13)(2) with the resulting word (namely 132) having 1 inversion.
Triangle starts:
1;
1;
2;
4, 2;
8, 8, 6, 2;
16, 24, 28, 26, 16, 8, 2;
32, 64, 96, 120, 126, 110, 82, 52, 26, 10, 2;
...
MAPLE
s:=j->2+sum(t^i, i=1..j): for n from 0 to 9 do P[n]:=sort(expand(simplify(product(s(j), j=0..n-2)))) od: for n from 0 to 9 do seq(coeff(P[n], t, j), j=0..degree(P[n])) od; # yields sequence in triangular form
MATHEMATICA
nMax = 9; s[j_] := 2 + Sum[t^i, {i, 1, j}]; P[0] = P[1] = 1; P[2] = 2; For[ n = 3, n <= nMax, n++, P[n] = Sort[Expand[Simplify[Product[s[j], {j, 0, n-2}]]]]]; Table[Coefficient[P[n], t, j], {n, 0, nMax}, {j, 0, Exponent[ P[n], t]}] // Flatten (* Jean-François Alcover, Jan 24 2017, adapted from Maple *)
CROSSREFS
Sequence in context: A287879 A336093 A304213 * A152874 A324716 A328378
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Apr 11 2007
EXTENSIONS
One term for row n=0 prepended by Alois P. Heinz, Dec 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 11:46 EDT 2024. Contains 371241 sequences. (Running on oeis4.)