login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129177 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that w(p)=k (n >= 0; 0 <= k <= n*(n-1)/2) (see comments for definition of w(p)). 2
1, 1, 1, 1, 2, 2, 1, 1, 6, 6, 3, 5, 2, 1, 1, 24, 24, 12, 20, 14, 10, 7, 5, 2, 1, 1, 120, 120, 60, 100, 70, 74, 59, 37, 30, 19, 15, 7, 5, 2, 1, 1, 720, 720, 360, 600, 420, 444, 474, 342, 240, 214, 160, 116, 89, 49, 36, 25, 15, 7, 5, 2, 1, 1, 5040, 5040, 2520, 4200, 2940, 3108, 3318 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
w(p) is defined (by Edelman, Simion and White) in the following way: if p = (c[1])(c[2])... is expressed in standard cycle form (i.e., cycles ordered by increasing smallest elements with each cycle written with its smallest element in the first position), then w(p) = 0*|c[1]| + 1*|c[2]| + 2*|c[3]| + ..., where |c[j]| denotes the number of entries in the cycle c[j].
Row n has 1 + n*(n-1)/2 terms. Row sums are the factorials (A000142). T(n,0) = T(n,1) = (n-1)! for n >= 2. T(n,2) = (n-1)!/2 = A001710(n-1) for n >= 3. Sum_{k>=0} k*T(n,k) = A067318(n).
LINKS
P. H. Edelman, R. Simion and D. White, Partition statistics on permutations, Discrete Math. 99 (1992), 63-68.
M. Shattuck, Parity theorems for statistics on permutations and Catalan words, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5, Paper A07, 2005.
FORMULA
Generating polynomial of row n is P[n](t) = Product_{i=0..n-1} (i + t^i).
Sum_{k=0..n*(n-1)/2} (k+1) * T(n,k) = A121586(n). - Alois P. Heinz, May 04 2023
EXAMPLE
T(4,2)=3 because we have w(1423) = w((1)(243)) = 0*1 + 1*3 = 3, w(1342) = w((1)(234)) = 0*1 + 1*3=3 and w(2134) = w((12)(3)(4)) = 0*2 + 1*1 + 2*1 = 3.
Triangle starts:
1;
1;
1, 1;
2, 2, 1, 1;
6, 6, 3, 5, 2, 1, 1;
24, 24, 12, 20, 14, 10, 7, 5, 2, 1, 1;
MAPLE
for n from 0 to 8 do P[n]:=sort(expand(product(i+t^i, i=0..n-1))) od: for n from 0 to 8 do seq(coeff(P[n], t, j), j=0..n*(n-1)/2) od; # yields sequence in triangular form
# second Maple program:
p:= proc(n) option remember; `if`(n<0, 1, expand((n+t^n)*p(n-1))) end:
T:= n-> (h-> seq(coeff(h, t, i), i=0..degree(h)))(p(n-1)):
seq(T(n), n=0..8); # Alois P. Heinz, Dec 16 2016
MATHEMATICA
p[n_] := p[n] = If[n<0, 1, Expand[(n+t^n)*p[n-1]]]; T[n_] := Function[h, Table[Coefficient[h, t, i], {i, 0, Exponent[h, t]}]][p[n-1]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A114626 A221916 A124773 * A127452 A263755 A135879
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Apr 11 2007
EXTENSIONS
One term for row n=0 prepended by Alois P. Heinz, Dec 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:00 EST 2023. Contains 367600 sequences. (Running on oeis4.)