login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114626
Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having k peaks at level 2; 0<= k<=n-1, n>=2 (a Dyck path is said to be hill-free if it has no peaks at level 1).
1
0, 1, 1, 0, 1, 2, 2, 1, 1, 6, 6, 3, 2, 1, 19, 17, 12, 5, 3, 1, 61, 56, 36, 20, 8, 4, 1, 202, 185, 120, 66, 31, 12, 5, 1, 683, 624, 409, 224, 110, 46, 17, 6, 1, 2348, 2144, 1408, 784, 385, 172, 66, 23, 7, 1, 8184, 7468, 4920, 2760, 1380, 624, 257, 92, 30, 8, 1, 28855, 26317
OFFSET
2,6
COMMENTS
Row n has n terms (n>=2). Row sums yield the Fine numbers (A000957). T(n,0)=A114627(n-3). Sum(kT(n,k),k=0..n-1)=A114495(n).
FORMULA
G.f.=(1+z-tz-zC)/[1+z+z^2-tz-tz^2-z(1+z)C], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
EXAMPLE
T(5,2)=3 because we have U(UD)(UD)UUDDD, UUUDD(UD)(UD)D and U(UD)UUDD(UD)D, where U=(1,1), D=(1,-1) (the peaks at level 2 are shown between parentheses).
Triangle begins:
0,1;
1,0,1;
2,2,1,1;
6,6,3,2,1;
19,17,12,5,3,1;
MAPLE
C:=(1-sqrt(1-4*z))/2/z: G:=(1+z-t*z-z*C)/(1+z+z^2-t*z-t*z^2-z*(1+z)*C): Gser:=simplify(series(G, z=0, 15)): for n from 2 to 12 do P[n]:=coeff(Gser, z^n) od: for n from 2 to 12 do seq(coeff(t*P[n], t^j), j=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 18 2005
STATUS
approved