The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114495 Number of returns to the x-axis in all hill-free Dyck paths of semilength n (a Dyck path is said to be hill-free if it has no peaks at level 1). 5
 0, 1, 2, 7, 22, 73, 246, 844, 2936, 10334, 36736, 131709, 475714, 1729345, 6322534, 23232616, 85757008, 317839438, 1182341740, 4412949358, 16521076012, 62024023306, 233451103612, 880764587512, 3330234867792, 12617475113968 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums of A114494. Self-convolution of A000958. - Sergio Falcon, Oct 28 2008 Removing the initial zeros and setting both offsets to zero, this here is the Catalan transform of A006918. - R. J. Mathar, Jun 29 2009 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832; see also. FORMULA a(n) = Sum_{k=1..floor(n/2)} k^2*binomial(2*n-2*k, n-2*k)/(n-k). G.f.: (1 - sqrt(1-4*x))^2/(1 + sqrt(1-4*x) + 2*x)^2. a(n) ~ 5*4^(n+1)/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014 D-finite with recurrence 2*(n+2)*a(n) +(-7*n-1)*a(n-1) +2*(-3*n-1)*a(n-2) +(7*n-27)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 26 2022 EXAMPLE a(4) = 7 because in the six hill-free Dyck paths of semilength 4, namely UUD(D)UUD(D), UUDUDUD(D), UUDUUDD(D), UUUDDUD(D), UUUDUDD(D) and UUUUDDD(D), we have altogether 7 returns to the x-axis (shown between parentheses). MAPLE a:=n->sum(k^2*binomial(2*n-2*k, n-2*k)/(n-k), k=1..floor(n/2)): seq(a(n), n=1..30); # second Maple program: a:= proc(n) option remember; `if`(n<3, n*(n-1)/2, ((105*n^3-286*n^2+123*n+10)*a(n-1) +2*(n-1)*(2*n-1)*(15*n+2)*a(n-2))/ (2*(n-2)*(n+2)*(15*n-13))) end: seq(a(n), n=1..30); # Alois P. Heinz, Feb 08 2014 MATHEMATICA Rest[CoefficientList[Series[(1-Sqrt[1-4*x])^2/(1+Sqrt[1-4*x]+2*x)^2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *) PROG (PARI) for(n=1, 25, print1(sum(k=1, floor(n/2), k^2*binomial(2*n-2*k, n-2*k)/(n-k)), ", ")) \\ G. C. Greubel, Jan 31 2017 CROSSREFS Cf. A114494. Sequence in context: A294012 A293809 A307976 * A137398 A151439 A204218 Adjacent sequences: A114492 A114493 A114494 * A114496 A114497 A114498 KEYWORD nonn AUTHOR Emeric Deutsch, Dec 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 10:00 EST 2023. Contains 367600 sequences. (Running on oeis4.)