login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293809
Number of multisets of exactly n nonempty words with a total of 2n letters over 2n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
1, 2, 7, 22, 73, 240, 818, 2824, 10004, 36252, 134594, 512632, 2002797, 8037634, 33122211, 140287074, 610344666, 2728599114, 12524559427, 59014996342, 285169596358, 1412357461074, 7161541766341, 37150562120334, 196945057245451, 1066104659977212
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A000085(j+1).
Euler transform of j-> A000085(j+1).
a(n) = A293808(2n,n).
EXAMPLE
a(0) = 1: {}.
a(1) = 2: {aa}, {ab}.
a(2) = 7: {a,aaa}, {a,aab}, {a,aba}, {a,abc}, {aa,aa}, {aa,ab}, {ab,ab}.
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
g(d+1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30);
MATHEMATICA
g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A294010 A294011 A294012 * A307976 A114495 A137398
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 16 2017
STATUS
approved