The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293807 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - x^a(k))^a(k). 2
 1, 1, 1, 4, 9, 14, 19, 24, 39, 63, 87, 111, 155, 235, 329, 423, 552, 771, 1091, 1430, 1825, 2400, 3295, 4392, 5597, 7117, 9367, 12476, 16077, 20182, 25677, 33472, 43406, 54578, 68109, 86475, 111316, 140965, 174836, 217520, 275130, 348555, 433578, 533640, 662620, 831747 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) = number of partitions of n into preceding terms starting from a(1), a(2), a(3), ... (for n > 1), with a(1) type of part a(1), a(2) types of part a(2), ... LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - x^a(n))^a(n). EXAMPLE a(3) = 4 because we have [1a, 1a, 1a], [1a, 1a, 1b], [1a, 1b, 1b] and [1b, 1b, 1b]. G.f. = -x - 2*x^2 + 1/((1 - x)*(1 - x)*(1 - x^4)^4*(1 - x^9)^9*(1 - x^14)^14*(1 - x^19)^19*(1 - x^24)^24*(1 - x^39)^39*...) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + 39*x^8 + ... MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(b(n-a(i)*j, i-1)*binomial(a(i)+j-1, j), j=0..n/a(i))))     end: a:= n-> `if`(n<2, 1, b(n, n-1)): seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2017 MATHEMATICA a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^a[k])^a[k], {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 45}] PROG (Python) from sympy import binomial from sympy.core.cache import cacheit @cacheit def b(n, i): return 1 if n==0 else 0 if i<1 else sum(b(n - a(i)*j, i - 1) * binomial(a(i) + j - 1, j) for j in range(n//a(i) + 1)) def a(n): return 1 if n<2 else b(n, n - 1) print([a(n) for n in range(51)]) # Indranil Ghosh, Dec 13 2017, after Maple code CROSSREFS Cf. A000081, A000219, A151945, A293806. Sequence in context: A190056 A313118 A313119 * A300411 A313120 A313121 Adjacent sequences:  A293804 A293805 A293806 * A293808 A293809 A293810 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Oct 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)