login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293807 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - x^a(k))^a(k). 2
1, 1, 1, 4, 9, 14, 19, 24, 39, 63, 87, 111, 155, 235, 329, 423, 552, 771, 1091, 1430, 1825, 2400, 3295, 4392, 5597, 7117, 9367, 12476, 16077, 20182, 25677, 33472, 43406, 54578, 68109, 86475, 111316, 140965, 174836, 217520, 275130, 348555, 433578, 533640, 662620, 831747 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) = number of partitions of n into preceding terms starting from a(1), a(2), a(3), ... (for n > 1), with a(1) type of part a(1), a(2) types of part a(2), ...

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Index entries for sequences related to partitions

FORMULA

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - x^a(n))^a(n).

EXAMPLE

a(3) = 4 because we have [1a, 1a, 1a], [1a, 1a, 1b], [1a, 1b, 1b] and [1b, 1b, 1b].

G.f. = -x - 2*x^2 + 1/((1 - x)*(1 - x)*(1 - x^4)^4*(1 - x^9)^9*(1 - x^14)^14*(1 - x^19)^19*(1 - x^24)^24*(1 - x^39)^39*...) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + 39*x^8 + ...

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(b(n-a(i)*j, i-1)*binomial(a(i)+j-1, j), j=0..n/a(i))))

    end:

a:= n-> `if`(n<2, 1, b(n, n-1)):

seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2017

MATHEMATICA

a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^a[k])^a[k], {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 45}]

PROG

(Python)

from sympy import binomial

from sympy.core.cache import cacheit

@cacheit

def b(n, i): return 1 if n==0 else 0 if i<1 else sum(b(n - a(i)*j, i - 1) * binomial(a(i) + j - 1, j) for j in range(n//a(i) + 1))

def a(n): return 1 if n<2 else b(n, n - 1)

print([a(n) for n in range(51)]) # Indranil Ghosh, Dec 13 2017, after Maple code

CROSSREFS

Cf. A000081, A000219, A151945, A293806.

Sequence in context: A190056 A313118 A313119 * A300411 A313120 A313121

Adjacent sequences:  A293804 A293805 A293806 * A293808 A293809 A293810

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Oct 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)