OFFSET
0,3
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 12.
FindStat - Combinatorial Statistic Finder, The number of occurrences of the contiguous pattern [.,[.,[[.,.],.]]].
Toufik Mansour and Mark Shattuck, Counting occurrences of subword patterns in non-crossing partitions, Art Disc. Appl. Math. (2022).
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
G.f.: G=G(t, z) satisfies z(t+z-tz)G^2-(1-2(1-t)z+(1-t)z^2)G+1-z+tz=0.
EXAMPLE
T(5,1) = 7 because we have UU(DDUU)DUDD, UU(DDUU)UDDD, UDUU(DDUU)DD, their mirror images and UUU(DDUU)DDD (the DDUU's are shown between parentheses).
Triangle starts:
1;
1;
2;
5;
13, 1;
35, 7;
97, 34, 1;
...
MAPLE
G:=1/2/(-t*z-z^2+z^2*t)*(-1+2*z-2*t*z-z^2+z^2*t+sqrt(1+z^4-2*z^4*t+z^4*t^2-4*z+2*z^2-2*z^2*t)): Gser:=simplify(series(G, z=0, 17)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser, z^n) od: 1; 1; for n from 0 to 14 do seq(coeff(t*P[n], t^j), j=1..floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
m = 15; G[_, _] = 0;
Do[G[t_, z_] = (-1 + z - t z - t z G[t, z]^2 - z^2 G[t, z]^2 + t z^2 G[t, z]^2)/(-1 + 2z - 2t z - z^2 + t z^2) + O[t]^Floor[m/2] + O[z]^m, {m}];
CoefficientList[#, t]& /@ Take[CoefficientList[G[t, z], z], m] // Flatten (* Jean-François Alcover, Oct 05 2019 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 01 2005
STATUS
approved