login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114489
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n that have k valleys at level 1.
1
1, 1, 2, 4, 1, 9, 4, 1, 22, 14, 5, 1, 58, 46, 21, 6, 1, 163, 149, 80, 29, 7, 1, 483, 484, 292, 124, 38, 8, 1, 1494, 1589, 1044, 498, 179, 48, 9, 1, 4783, 5288, 3701, 1928, 780, 246, 59, 10, 1, 15740, 17848, 13096, 7304, 3237, 1152, 326, 71, 11, 1, 52956, 61060, 46428
OFFSET
0,3
COMMENTS
T(n,k) is also the number of Dyck paths of semilength n having k pairs of consecutive valleys at the same level. Example: T(4,1)=4 because we have U(DU)(DU)UDD, U(DU)UD(DU)D, UUD(DU)(DU)D, and UU(DU)(DU)DD, where U=(1,1), D=(1,-1); the pairs of consecutive same-level valleys are shown between parentheses. - Emeric Deutsch, Jun 19 2011
Rows 0 and 1 contain one term each; row n contains n-1 terms (n>=2).
Row sums are the Catalan numbers (A000108).
Column 0 yields A059019.
Sum(k*T(n,k), k=0..n-1) = 6*binomial(2*n-1,n-3)/(n+3) (A003517).
LINKS
FORMULA
G.f.: (1-t*z*C)/((1-z)*(1-t*z*C)-z^2*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
EXAMPLE
T(4,1) = 4 because we have UU(DU)DDUD, UDUU(DU)DD, UU(DU)UDDD and UUUD(DU)DD, where U=(1,1), D=(1,-1); the valleys at level 1 are shown between parentheses.
Triangle starts:
1;
1;
2;
4, 1;
9, 4, 1;
22, 14, 5, 1;
MAPLE
C:=(1-sqrt(1-4*z))/2/z: G:=(1-t*z*C)/(1-t*z*C-z+t*z^2*C-z^2*C): Gser:=simplify(series(G, z=0, 17)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser, z^n) od: 1; 1; for n from 2 to 12 do seq(coeff(t*P[n], t^j), j=1..n-1) od; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, expand(b(x-1, y-1, 1)+
`if`(t=1 and y=1, z, 1)*b(x-1, y+1, 0))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0$2)):
seq(T(n), n=0..14); # Alois P. Heinz, Mar 12 2014
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, 1] + If[t == 1 && y == 1, z, 1]*b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 01 2005
STATUS
approved