login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114486
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k UUDD's starting at level 0; here U=(1,1), D=(1,-1) (0<=k<=floor(n/2)).
2
1, 1, 1, 1, 3, 2, 10, 3, 1, 31, 8, 3, 98, 27, 6, 1, 321, 88, 16, 4, 1078, 287, 54, 10, 1, 3686, 960, 183, 28, 5, 12789, 3280, 616, 95, 15, 1, 44919, 11378, 2106, 332, 45, 6, 159407, 39953, 7323, 1152, 155, 21, 1, 570704, 141752, 25785, 4028, 556, 68, 7, 2058817
OFFSET
0,5
COMMENTS
Row n has 1+floor(n/2) terms. Row sums are the Catalan numbers (A000108). Sum(k*T(n,k),k=0..floor(n/2))=A000108(n-1) (the Catalan numbers). Column 0 yields A114487.
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
G.f. G=G(t, z) satisfies G=1+z(C-z+tz)G, where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. G=2/[1+2z^2-2tz^2+sqrt(1-4z)].
EXAMPLE
T(5,2)=3 because we have UUDDUUDDUD, UUDDUDUUDD and UDUUDDUUDD, where U=(1,1), D=(1,-1).
Triangle starts:
1;
1;
1,1;
3,2;
10,3,1;
31,8,3;
98,27,6,1; ...
MAPLE
C:=(1-sqrt(1-4*z))/2/z: eq:=G=1+z*(C-z+t*z)*G: G:=solve(eq, G): Gser:=simplify(series(G, z=0, 17)): P[0]:=1: for n from 1 to 15 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 15 do seq(coeff(t*P[n], t^j), j=1..1+floor(n/2)) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A292923 A354191 A135515 * A176743 A220466 A090780
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Nov 30 2005
STATUS
approved