login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321461
a(n) = -a(n-1) + 2*a(n-2) + a(n-3), a(0) = -1, a(1) = -2, a(2) = -4.
2
-1, -2, -4, -1, -9, 3, -22, 19, -60, 76, -177, 269, -547, 908, -1733, 3002, -5560, 9831, -17949, 32051, -58118, 104271, -188456, 338880, -611521, 1100825, -1984987, 3575116, -6444265, 11609510, -20922924
OFFSET
0,2
COMMENTS
Let {X,Y,Z} be the roots of the cubic equation t^3 + at^2 + bt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
This sequence has (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(4k), 2*cos(8k), 2*cos(2k)).
A094648: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(8k), 2*cos(2k), 2*cos(4k)).
A321175: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(2k), 2*cos(4k), 2*cos(8k)).
X = sin(2k)/sin(8k), Y = sin(4k)/sin(2k), Z = sin(8k)/sin(4k).
FORMULA
G.f.: -(1 + 3*x + 4*x^2) / (1 + x - 2*x^2 - x^3). - Colin Barker, Feb 19 2019
PROG
(PARI) Vec(-(1 + 3*x + 4*x^2) / (1 + x - 2*x^2 - x^3) + O(x^40)) \\ Colin Barker, Feb 19 2019
CROSSREFS
Sequence in context: A182903 A378960 A169840 * A092107 A114489 A101974
KEYWORD
sign,easy
AUTHOR
Kai Wang, Jan 10 2019
EXTENSIONS
Title corrected by Colin Barker, Jan 12 2019
STATUS
approved