login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321175
a(n) = -a(n-1) + 2*a(n-2) + a(n-3), a(0) = -1, a(1) = -2, a(2) = 3.
2
-1, -2, 3, -8, 12, -25, 41, -79, 136, -253, 446, -816, 1455, -2641, 4735, -8562, 15391, -27780, 50000, -90169, 162389, -292727, 527336, -950401, 1712346, -3085812, 5560103, -10019381, 18053775, -32532434, 58620603
OFFSET
0,2
COMMENTS
Let {X,Y,Z} be the roots of the cubic equation t^3 + at^2 + bt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
This sequence has (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(2k), 2*cos(4k), 2*cos(8k)).
A094648: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(8k), 2*cos(2k), 2*cos(4k)).
A321461 : (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(4k), 2*cos(8k), 2*cos(2k)).
X = sin(2k)/sin(8k), Y = sin(4k)/sin(2k), Z = sin(8k)/sin(4k).
FORMULA
G.f.: -(1 + 3*x - 3*x^2) / (1 + x - 2*x^2 - x^3). - Colin Barker, Jan 11 2019
MATHEMATICA
LinearRecurrence[{-1, 2, 1}, {-1, -2, 3}, 50] (* Stefano Spezia, Jan 11 2019 *)
PROG
(PARI) Vec(-(1 + 3*x - 3*x^2) / (1 + x - 2*x^2 - x^3) + O(x^30)) \\ Colin Barker, Jan 11 2019
CROSSREFS
Sequence in context: A194452 A242516 A282281 * A079980 A025080 A024468
KEYWORD
sign,easy
AUTHOR
Kai Wang, Jan 10 2019
STATUS
approved