login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = -a(n-1) + 2*a(n-2) + a(n-3), a(0) = -1, a(1) = -2, a(2) = 3.
2

%I #27 Feb 19 2019 09:20:03

%S -1,-2,3,-8,12,-25,41,-79,136,-253,446,-816,1455,-2641,4735,-8562,

%T 15391,-27780,50000,-90169,162389,-292727,527336,-950401,1712346,

%U -3085812,5560103,-10019381,18053775,-32532434,58620603

%N a(n) = -a(n-1) + 2*a(n-2) + a(n-3), a(0) = -1, a(1) = -2, a(2) = 3.

%C Let {X,Y,Z} be the roots of the cubic equation t^3 + at^2 + bt + c = 0 where {a, b, c} are integers.

%C Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.

%C Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).

%C Let k = Pi/7.

%C This sequence has (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(2k), 2*cos(4k), 2*cos(8k)).

%C A094648: (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(8k), 2*cos(2k), 2*cos(4k)).

%C A321461 : (a, b, c) = (1, -2, -1), (u, v, w) = (2*cos(4k), 2*cos(8k), 2*cos(2k)).

%C X = sin(2k)/sin(8k), Y = sin(4k)/sin(2k), Z = sin(8k)/sin(4k).

%H Colin Barker, <a href="/A321175/b321175.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2,1).

%F G.f.: -(1 + 3*x - 3*x^2) / (1 + x - 2*x^2 - x^3). - _Colin Barker_, Jan 11 2019

%t LinearRecurrence[{-1,2,1},{-1,-2,3},50] (* _Stefano Spezia_, Jan 11 2019 *)

%o (PARI) Vec(-(1 + 3*x - 3*x^2) / (1 + x - 2*x^2 - x^3) + O(x^30)) \\ _Colin Barker_, Jan 11 2019

%Y Cf. A321461, A094648.

%K sign,easy

%O 0,2

%A _Kai Wang_, Jan 10 2019