OFFSET
0,5
COMMENTS
A set system is a finite set of finite nonempty sets.
EXAMPLE
The a(2) = 1 through a(9) = 15 partitions:
(11) (111) (211) (221) (222) (322) (2222) (333)
(1111) (2111) (2211) (2221) (3221) (3222)
(11111) (3111) (3211) (3311) (3321)
(21111) (22111) (22211) (4221)
(111111) (31111) (32111) (22221)
(211111) (41111) (32211)
(1111111) (221111) (33111)
(311111) (42111)
(2111111) (222111)
(11111111) (321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
The a(8) = 10 integer partitions together with a realizing set system for each (the parts of the partition count the appearances of each vertex in the set system):
(41111): {{1,2},{1,3},{1,4},{1,5}}
(3311): {{1,2},{1,2,3},{1,2,4}}
(3221): {{1,2},{1,3},{1,2,3,4}}
(32111): {{1,2},{1,3},{1,2,4,5}}
(311111): {{1,2},{1,3},{1,4,5,6}}
(2222): {{1,2},{3,4},{1,2,3,4}}
(22211): {{1,2,3},{1,2,3,4,5}}
(221111): {{1,2},{1,2,3,4,5,6}}
(2111111): {{1,2},{1,3,4,5,6,7}}
(11111111): {{1,2,3,4,5,6,7,8}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
hyp[m_]:=Select[mps[m], And[And@@UnsameQ@@@#, UnsameQ@@#, Min@@Length/@#>1]&];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[n], hyp[#]!={}&]], {n, 8}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 29 2018
STATUS
approved