login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321176
Number of integer partitions of n that are the vertex-degrees of some set system with no singletons.
3
1, 0, 1, 1, 2, 3, 5, 7, 10, 15, 21, 28
OFFSET
0,5
COMMENTS
A set system is a finite set of finite nonempty sets.
EXAMPLE
The a(2) = 1 through a(9) = 15 partitions:
(11) (111) (211) (221) (222) (322) (2222) (333)
(1111) (2111) (2211) (2221) (3221) (3222)
(11111) (3111) (3211) (3311) (3321)
(21111) (22111) (22211) (4221)
(111111) (31111) (32111) (22221)
(211111) (41111) (32211)
(1111111) (221111) (33111)
(311111) (42111)
(2111111) (222111)
(11111111) (321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
The a(8) = 10 integer partitions together with a realizing set system for each (the parts of the partition count the appearances of each vertex in the set system):
(41111): {{1,2},{1,3},{1,4},{1,5}}
(3311): {{1,2},{1,2,3},{1,2,4}}
(3221): {{1,2},{1,3},{1,2,3,4}}
(32111): {{1,2},{1,3},{1,2,4,5}}
(311111): {{1,2},{1,3},{1,4,5,6}}
(2222): {{1,2},{3,4},{1,2,3,4}}
(22211): {{1,2,3},{1,2,3,4,5}}
(221111): {{1,2},{1,2,3,4,5,6}}
(2111111): {{1,2},{1,3,4,5,6,7}}
(11111111): {{1,2,3,4,5,6,7,8}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
hyp[m_]:=Select[mps[m], And[And@@UnsameQ@@@#, UnsameQ@@#, Min@@Length/@#>1]&];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[n], hyp[#]!={}&]], {n, 8}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 29 2018
STATUS
approved