login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320922 Heinz numbers of graphical partitions. 35
1, 4, 12, 16, 27, 36, 40, 48, 64, 81, 90, 108, 112, 120, 144, 160, 192, 225, 243, 252, 256, 270, 300, 324, 336, 352, 360, 400, 432, 448, 480, 567, 576, 625, 630, 640, 675, 729, 750, 756, 768, 792, 810, 832, 840, 900, 972, 1000, 1008, 1024, 1056, 1080, 1120 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

An integer partition is graphical if it comprises the vertex-degrees of some simple graph.

LINKS

Table of n, a(n) for n=1..53.

EXAMPLE

The sequence of all graphical partitions begins: (), (11), (211), (1111), (222), (2211), (3111), (21111), (111111), (2222), (3221), (22211), (41111), (32111), (221111), (311111), (2111111), (3322), (22222), (42211).

MATHEMATICA

prptns[m_]:=Union[Sort/@If[Length[m]==0, {{}}, Join@@Table[Prepend[#, m[[ipr]]]&/@prptns[Delete[m, List/@ipr]], {ipr, Select[Prepend[{#}, 1]&/@Select[Range[2, Length[m]], m[[#]]>m[[#-1]]&], UnsameQ@@m[[#]]&]}]]];

Select[Range[1000], Select[prptns[Flatten[MapIndexed[Table[#2, {#1}]&, If[#==1, {}, Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]], UnsameQ@@#&]!={}&]

CROSSREFS

Cf. A000070, A000569, A007717, A056239, A096373, A112798, A147878, A209816, A300061, A320458, A320911, A320923, A320924.

Sequence in context: A187084 A090818 A075191 * A028594 A239050 A152680

Adjacent sequences:  A320919 A320920 A320921 * A320923 A320924 A320925

KEYWORD

nonn

AUTHOR

Gus Wiseman, Oct 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 05:37 EDT 2021. Contains 347577 sequences. (Running on oeis4.)