The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239050 a(n) = 4*sigma(n). 29
 4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 4 times the sum of divisors of n. a(n) is also the total number of horizontal cells in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every three-dimensional quadrant arises after the 90-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a square formed by four cells (see links and examples). - Omar E. Pol, Jul 04 2016 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Omar E. Pol, Folding the first eight rows of triangle FORMULA a(n) = 4*A000203(n) = 2*A074400(n). a(n) = A000203(n) + A272027(n). - Omar E. Pol, Jul 04 2016 Dirichlet g.f.: 4*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016 Conjecture: a(n) = sigma(3*n) = A144613(n) iff n is not a multiple of 3. - Omar E. Pol, Oct 02 2018 The conjecture above is correct. Write n = 3^e*m, gcd(3, m) = 1, then sigma(3*n) = sigma(3^(e+1))*sigma(m) = ((3^(e+2) - 1)/2)*sigma(m) = ((3^(e+2) - 1)/((3^(e+1) - 1))*sigma(3^e*m), and (3^(e+2) - 1)/(3^(e+1) - 1) = 4 if and only if e = 0. - Jianing Song, Feb 03 2019 EXAMPLE For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28. For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24. . Illustration of initial terms:                                    _ _ _ _ _ _ .                                           _ _ _ _ _ _          |_|_|_|_|_|_| .                           _ _ _ _       _|_|_|_|_|_|_|_     _ _|           |_ _ .             _ _ _ _     _|_|_|_|_|_    |_|_|       |_|_|   |_|               |_| .     _ _    |_|_|_|_|   |_|       |_|   |_|           |_|   |_|               |_| .    |_|_|   |_|   |_|   |_|       |_|   |_|           |_|   |_|               |_| .    |_|_|   |_|_ _|_|   |_|       |_|   |_|           |_|   |_|               |_| .            |_|_|_|_|   |_|_ _ _ _|_|   |_|_         _|_|   |_|               |_| .                          |_|_|_|_|     |_|_|_ _ _ _|_|_|   |_|_             _|_| .                                          |_|_|_|_|_|_|         |_ _ _ _ _ _| .                                                                |_|_|_|_|_|_| . n:     1          2             3                4                     5 S(n):  1          3             4                7                     6 a(n):  4         12            16               28                    24 . For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593. The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - Omar E. Pol, Jul 04 2016 MAPLE with(numtheory): seq(4*sigma(n), n=1..64); # Omar E. Pol, Jul 04 2016 MATHEMATICA Array[4 DivisorSigma[1, #] &, 64] (* Michael De Vlieger, Nov 16 2017 *) PROG (PARI) a(n) = 4 * sigma(n); \\ Omar E. Pol, Jul 04 2016 (MAGMA) [4*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019 CROSSREFS Alternating row sums of A239662. Partial sums give A243980. k times sigma(n), k=1..6: A000203, A074400, A272027, this sequence, A274535, A274536. k times sigma(n), k = 1..10: A000203, A074400, A272027, this sequence, A274535, A274536, A319527, A319528, A325299, A326122. Cf. A008438, A017113, A062731, A112610, A144613, A193553, A196020, A235791, A236104, A237270, A237593, A239052, A239053, A239660, A239662, A244050, A262626. Sequence in context: A075191 A320922 A028594 * A152680 A270248 A228274 Adjacent sequences:  A239047 A239048 A239049 * A239051 A239052 A239053 KEYWORD nonn,easy AUTHOR Omar E. Pol, Mar 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)