login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239050 a(n) = 4*sigma(n). 26
4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

4 times the sum of divisors of n.

a(n) is also the total number of horizontal cells in the terraces of the n-th level of an irregular step pyramid (starting from the top) where the structure of every three-dimensional quadrant arises after the 90-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a square formed by four cells (see links and examples). - Omar E. Pol, Jul 04 2016

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

Omar E. Pol, Diagram of the triangle before the 90-degree-zig-zag folding (rows: 1..28)

Omar E. Pol, Folding the first eight rows of triangle

Index entries for sequences related to sigma(n)

FORMULA

a(n) = 4*A000203(n) = 2*A074400(n).

a(n) = A000203(n) + A272027(n). - Omar E. Pol, Jul 04 2016

Dirichlet g.f.: 4*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016

Conjecture: a(n) = sigma(3*n) = A144613(n) iff n is not a multiple of 3. - Omar E. Pol, Oct 02 2018

The conjecture above is correct. Write n = 3^e*m, gcd(3, m) = 1, then sigma(3*n) = sigma(3^(e+1))*sigma(m) = ((3^(e+2) - 1)/2)*sigma(m) = ((3^(e+2) - 1)/((3^(e+1) - 1))*sigma(3^e*m), and (3^(e+2) - 1)/(3^(e+1) - 1) = 4 if and only if e = 0. - Jianing Song, Feb 03 2019

EXAMPLE

For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.

For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.

.

Illustration of initial terms:                                    _ _ _ _ _ _

.                                           _ _ _ _ _ _          |_|_|_|_|_|_|

.                           _ _ _ _       _|_|_|_|_|_|_|_     _ _|           |_ _

.             _ _ _ _     _|_|_|_|_|_    |_|_|       |_|_|   |_|               |_|

.     _ _    |_|_|_|_|   |_|       |_|   |_|           |_|   |_|               |_|

.    |_|_|   |_|   |_|   |_|       |_|   |_|           |_|   |_|               |_|

.    |_|_|   |_|_ _|_|   |_|       |_|   |_|           |_|   |_|               |_|

.            |_|_|_|_|   |_|_ _ _ _|_|   |_|_         _|_|   |_|               |_|

.                          |_|_|_|_|     |_|_|_ _ _ _|_|_|   |_|_             _|_|

.                                          |_|_|_|_|_|_|         |_ _ _ _ _ _|

.                                                                |_|_|_|_|_|_|

.

n:     1          2             3                4                     5

S(n):  1          3             4                7                     6

a(n):  4         12            16               28                    24

.

For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.

The diagram also represents the top view of the first four terraces of the step pyramid described in Comments section. - Omar E. Pol, Jul 04 2016

MAPLE

with(numtheory): seq(4*sigma(n), n=1..64); # Omar E. Pol, Jul 04 2016

MATHEMATICA

Array[4 DivisorSigma[1, #] &, 64] (* Michael De Vlieger, Nov 16 2017 *)

PROG

(PARI) a(n) = 4 * sigma(n); \\ Omar E. Pol, Jul 04 2016

(MAGMA) [4*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019

CROSSREFS

Alternating row sums of A239662.

Partial sums give A243980.

k times sigma(n), k=1..6: A000203, A074400, A272027, this sequence, A274535, A274536.

k times sigma(n), k = 1..10: A000203, A074400, A272027, this sequence, A274535, A274536, A319527, A319528, A325299, A326122.

Cf. A008438, A017113, A062731, A112610, A144613, A193553, A196020, A235791, A236104, A237270, A237593, A239052, A239053, A239660, A239662, A244050, A262626.

Sequence in context: A075191 A320922 A028594 * A152680 A270248 A228274

Adjacent sequences:  A239047 A239048 A239049 * A239051 A239052 A239053

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Mar 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 12:37 EST 2020. Contains 338639 sequences. (Running on oeis4.)