login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239051
Expansion of (f(-q^2, -q^3)^5 - 3 * q * f(-q, -q^4)^5) / f(-q)^3 in powers of q where f() is a Ramanujan theta function.
1
1, 0, 10, -10, 10, 0, 0, 10, 0, -10, 10, 0, 10, -10, 20, -10, 0, 10, -10, 0, 10, 0, 20, -10, 0, 0, 0, 0, 10, 0, 0, 0, 10, -20, 20, 10, 0, 10, 0, -20, 0, 0, 20, -10, 20, -10, 0, 10, -10, 10, 10, 0, 10, -10, 0, 0, 0, 0, 0, 0, 10, 0, 20, -10, 10, -10, 0, 10, 10
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Moebius transform is period 5 sequence [ 0, 10, -10, 0, 0, ...].
G.f.: 1 + 10 * ( Sum_{k>=0} x^(5*k + 2) / (1 - x^(5*k + 2)) - x^(5*k + 3) / (1 - x^(5*k + 3)) ).
a(n) = A227216(n) - 3 * A229802(n).
a(5*n) = a(n). a(5*n + 1) = 0.
EXAMPLE
G.f. = 1 + 10*q^2 - 10*q^3 + 10*q^4 + 10*q^7 - 10*q^9 + 10*q^10 + 10*q^12 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[ n == 0], 10 Sum[ {0, 1, -1, 0, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]];
PROG
(PARI) {a(n) = if( n<1, n==0, 10 * sumdiv(n, d, (d%5==2) - (d%5==3)))};
(Sage) ModularForms( Gamma1(5), 1, prec=70).0;
(Magma) Basis( ModularForms( Gamma1(5), 1), 70) [1];
CROSSREFS
Sequence in context: A087028 A145279 A103708 * A131722 A072803 A163139
KEYWORD
sign
AUTHOR
Michael Somos, Jun 13 2014
STATUS
approved