login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229802
Expansion of q * f(-q, -q^4)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function.
4
1, -2, 4, -3, 1, 2, -2, 0, 3, -2, 2, -2, 4, -6, 4, 1, -2, 4, 0, -3, 2, -4, 4, 0, 1, 2, 0, -4, 0, 2, 2, -2, 8, -6, -2, 1, -2, 0, 6, 0, 2, -4, 4, -6, 3, 2, -2, 4, -3, -2, 2, -2, 4, 0, 2, 0, 0, 0, 0, -2, 2, -4, 4, -3, 4, 4, -2, -4, 6, -6, 2, 0, 4, -6, 4, 0, -4
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * f(-q)^2 * (f(-q^5) / f(-q^2, -q^3))^5 = q * f(-q, -q^4)^2 * (f(-q^5) / f(-q^2, -q^3))^3 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Jun 10 2014
Euler transform of period 5 sequence [ -2, 3, 3, -2, -2, ...].
Moebius transform is period 5 sequence [ 1, -3, 3, -1, 0, ...]. - Michael Somos, Jun 10 2014
G.f.: x * (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 2)) * (1 - x^(5*k - 3)))^5.
a(5*n) = a(n).
EXAMPLE
G.f. = q - 2*q^2 + 4*q^3 - 3*q^4 + q^5 + 2*q^6 - 2*q^7 + 3*q^9 - 2*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 / (QPochhammer[ q^2, q^5] QPochhammer[ q^3, q^5])^5, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
a[ n_] := If[ n < 1, 0, Sum[ Im[(I - 3) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]]; (* Michael Somos, Jun 10 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + A)^[ 2, 2, -3, -3, 2][k%5 + 1]), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, imag( (I - 3) * [ 0, 1, I, -I, -1][ d%5 + 1])))}; /* Michael Somos, Jun 10 2014 */
(Sage) ModularForms( Gamma1(5), 1, prec=70).1;
(Magma) Basis( ModularForms( Gamma1(5), 1), 70) [2] ; /* Michael Somos, Jun 10 2014 */
CROSSREFS
Cf. A227216.
Sequence in context: A285587 A134893 A227862 * A106581 A317612 A070402
KEYWORD
sign
AUTHOR
Michael Somos, Sep 29 2013
STATUS
approved