OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * f(-q)^2 * (f(-q^5) / f(-q^2, -q^3))^5 = q * f(-q, -q^4)^2 * (f(-q^5) / f(-q^2, -q^3))^3 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Jun 10 2014
Euler transform of period 5 sequence [ -2, 3, 3, -2, -2, ...].
Moebius transform is period 5 sequence [ 1, -3, 3, -1, 0, ...]. - Michael Somos, Jun 10 2014
G.f.: x * (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 2)) * (1 - x^(5*k - 3)))^5.
a(5*n) = a(n).
EXAMPLE
G.f. = q - 2*q^2 + 4*q^3 - 3*q^4 + q^5 + 2*q^6 - 2*q^7 + 3*q^9 - 2*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 / (QPochhammer[ q^2, q^5] QPochhammer[ q^3, q^5])^5, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
a[ n_] := If[ n < 1, 0, Sum[ Im[(I - 3) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]]; (* Michael Somos, Jun 10 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + A)^[ 2, 2, -3, -3, 2][k%5 + 1]), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, imag( (I - 3) * [ 0, 1, I, -I, -1][ d%5 + 1])))}; /* Michael Somos, Jun 10 2014 */
(Sage) ModularForms( Gamma1(5), 1, prec=70).1;
(Magma) Basis( ModularForms( Gamma1(5), 1), 70) [2] ; /* Michael Somos, Jun 10 2014 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 29 2013
STATUS
approved