login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229804
Zeroless numbers n such that n and n*product_of_digits(n) are both palindromes.
1
1, 2, 3, 11, 22, 77, 111, 121, 131, 212, 464, 1111, 1221, 2112, 11111, 11211, 11311, 12121, 21112, 22622, 111111, 112211, 121121, 211112, 1111111, 1112111, 1113111, 1121211, 1211121, 2111112, 2223222, 4213124, 11111111, 11122111, 11211211, 12111121, 21111112
OFFSET
1,2
COMMENTS
Palindromes in the sequence A229550.
LINKS
EXAMPLE
77*(7*7) = 343*11 = 3773 (another palindrome). So 77 is a member of this sequence.
464*(4*6*4) = 44544 (another palindrome). So, 464 is a member of this sequence.
PROG
(Python)
def pal(n):
..r = ''
..for i in str(n):
....r = i + r
..return r == str(n)
def DP(n):
..p = 1
..for i in str(n):
....p *= int(i)
..return p
{print(n, end=', ') for n in range(1, 10**6) if DP(n)*pal(n)*pal(n*DP(n))}
## Simplified by Derek Orr, Apr 05 2015
(PARI) pal(n)=d=digits(n); Vecrev(d)==d
for(n=1, 10^8, d=digits(n); p=prod(i=1, #d, d[i]); if(p*pal(n)*pal(n*p), print1(n, ", "))) \\ Derek Orr, Apr 05 2015
CROSSREFS
Sequence in context: A128921 A118595 A229549 * A241096 A057135 A229805
KEYWORD
nonn,easy,base
AUTHOR
Derek Orr, Sep 29 2013
STATUS
approved