login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229550
Numbers n with nonzero digits such that n*(product of digits of n) is a palindrome.
2
1, 2, 3, 11, 19, 22, 35, 37, 77, 111, 115, 116, 121, 131, 212, 464, 671, 731, 1111, 1221, 1229, 2112, 4136, 4147, 6346, 9832, 11111, 11151, 11161, 11211, 11311, 12121, 12477, 12692, 12734, 17951, 18619, 21112, 22622
OFFSET
1,2
LINKS
EXAMPLE
4136*(4*1*3*6) = 297792 (a palindrome). So, 4136 is a member of this sequence.
PROG
(Python)
def ispal(n):
..r = ''
..for i in str(n):
....r = i + r
..return n == int(r)
def DP(n):
..p = 1
..for i in str(n):
....p *= int(i)
..return p
{print(n, end=', ') for n in range(10**4) if DP(n) and ispal(n*DP(n))}
## Simplified by Derek Orr, Apr 10 2015
(PARI) ispal(n)=n=digits(n); n==Vecrev(n)
dprod(n)=n=digits(n); prod(i=1, #n, n[i])
is(n)=my(d=dprod(n)); d && ispal(d*n) \\ Charles R Greathouse IV, Apr 30 2014
CROSSREFS
Cf. A007954.
Sequence in context: A257979 A365374 A095984 * A172258 A306395 A363497
KEYWORD
nonn,base
AUTHOR
Derek Orr, Sep 26 2013
STATUS
approved