login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227862
A boustrophedon triangle.
4
1, 1, 2, 4, 3, 1, 1, 5, 8, 9, 24, 23, 18, 10, 1, 1, 25, 48, 66, 76, 77, 294, 293, 268, 220, 154, 78, 1, 1, 295, 588, 856, 1076, 1230, 1308, 1309, 6664, 6663, 6368, 5780, 4924, 3848, 2618, 1310, 1, 1, 6665, 13328, 19696, 25476, 30400, 34248, 36866, 38176, 38177
OFFSET
0,3
COMMENTS
T(n, n * (n mod 2)) = A000667(n).
LINKS
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
EXAMPLE
First nine rows:
. 0: 1
. 1: 1 -> 2
. 2: 4 <- 3 <- 1
. 3: 1 -> 5 -> 8 -> 9
. 4: 24 <- 23 <- 18 <- 10 <- 1
. 5: 1 -> 25 -> 48 -> 66 -> 76 -> 77
. 6: 294 <- 293 <- 268 <- 220 <- 154 <- 78 <- 1
. 7: 1 -> 295 -> 588 -> 856 -> 1076 -> 1230 -> 1308 -> 1309
. 8: 6664 <- 6663 <- 6368 <- 5780 <- 4924 <- 3848 <- 2618 <- 1310 <- 1 .
MATHEMATICA
T[0, 0] = 1; T[n_?OddQ, 0] = 1; T[n_?EvenQ, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = If[OddQ[n], T[n, k - 1] + T[n - 1, k - 1], T[n, k + 1] + T[n - 1, k]]; T[_, _] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 23 2019 *)
PROG
(Haskell)
a227862 n k = a227862_tabl !! n !! k
a227862_row n = a227862_tabl !! n
a227862_tabl = map snd $ iterate ox (False, [1]) where
ox (turn, xs) = (not turn, if turn then reverse ys else ys)
where ys = scanl (+) 1 (if turn then reverse xs else xs)
CROSSREFS
Cf. A008280.
Sequence in context: A085008 A285587 A134893 * A229802 A106581 A317612
KEYWORD
nonn,tabl,look
AUTHOR
Reinhard Zumkeller, Nov 01 2013
STATUS
approved