This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239053 Sum of divisors of 4*n-1. 8
 4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Bisection of A008438. a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270. We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016 LINKS FORMULA a(n) = A000203(4n-1) = A000203(A004767(n-1)). a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014 EXAMPLE Illustration of initial terms: ----------------------------------------------------- .        Branches of the spiral .        in the third quadrant             n    a(n) ----------------------------------------------------- .     _       _       _       _ .    | |     | |     | |     | | .    | |     | |     | |     |_|_ _ .    | |     | |     | |    2  |_ _|       1      4 .    | |     | |     |_|_     2 .    | |     | |    4    |_ .    | |     |_|_ _        |_ _ _ _ .    | |    6      |_      |_ _ _ _|       2      8 .    |_|_ _ _        |_   4 .   8      | |_ _      | .          |_    |     |_ _ _ _ _ _ .            |_  |_    |_ _ _ _ _ _|       3     12 .           8  |_ _|  6 .                  | .                  |_ _ _ _ _ _ _ _ .                  |_ _ _ _ _ _ _ _|       4     24 .                 8 . For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24. MAPLE A239053:=n->numtheory[sigma](4*n-1): seq(A239053(n), n=1..80); # Wesley Ivan Hurt, Dec 06 2016 MATHEMATICA DivisorSigma[1, 4*Range[60]-1] (* Harvey P. Dale, Dec 06 2016 *) Table[DivisorSigma[1, 4 n - 1], {n, 100}] (* Vincenzo Librandi, Dec 07 2016 *) PROG (MAGMA) [SumOfDivisors(4*n-1): n in [1..60]]; // Vincenzo Librandi, Dec 07 2016 (PARI) a(n) = sigma(4*n-1); \\ Michel Marcus, Dec 07 2016 CROSSREFS Cf. A000203, A004767, A008438, A062731, A074400, A112610, A193553, A196020, A235791, A236104, A237270, A237591, A237593, A239050, A239052, A244050, A245092, A262626. Sequence in context: A015781 A130643 A014617 * A272708 A157416 A278602 Adjacent sequences:  A239050 A239051 A239052 * A239054 A239055 A239056 KEYWORD nonn,easy AUTHOR Omar E. Pol, Mar 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 12:47 EDT 2019. Contains 328318 sequences. (Running on oeis4.)