The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved. 161
 0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid. On the other hand the sequence also has a symmetric representation in two dimensions, see Example. From Omar E. Pol, Dec 31 2016: (Start) We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593. The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links). The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m). Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050. For more information about the pyramid see A237593 and all its related sequences. (End) LINKS Robert Price, Table of n, a(n) for n = 0..20000 Omar E. Pol, Perspective view of the pyramid (first 16 levels) FORMULA a(2*n-1) + a(2n) = A224880(n). EXAMPLE Illustration of initial terms: ---------------------------------------------------------------------- a(n)                             Diagram ---------------------------------------------------------------------- 0    _ 1   |_|\ _ 2    \ _| |\ _ 3     |_ _| | |\ _ 4      \ _ _|_| | |\ _ 4       |_ _|  _| | | |\ _ 6        \ _ _|  _| | | | |\ _ 7         |_ _ _|  _|_| | | | |\ _ 8          \ _ _ _|  _ _| | | | | |\ _ 6           |_ _ _| |    _| | | | | | |\ _ 10           \ _ _ _|  _|  _|_| | | | | | |\ _ 12            |_ _ _ _|  _|  _ _| | | | | | | |\ _ 12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _ 8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _ 14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _ 15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _ 16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\ 13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | | 18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | | 18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | | 20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | | 12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | | 22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | | 28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | | 24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| | 14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _| 26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| | 24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _| 28                             \ _ _ _ _ _ _ _ _| |  _ _|  _| 24                              |_ _ _ _ _ _ _ _| | |  _ _| 30                               \ _ _ _ _ _ _ _ _| | | 31                                |_ _ _ _ _ _ _ _ _| | 32                                 \ _ _ _ _ _ _ _ _ _| ... a(n) is the total area of the n-th set of symmetric regions in the diagram. . From Omar E. Pol, Aug 21 2015:  (Start) The above structure contains a hidden pattern, simpler, as shown below: Level                              _ _ 1                                _| | |_ 2                              _|  _|_  |_ 3                            _|   | | |   |_ 4                          _|    _| | |_    |_ 5                        _|     |  _|_  |     |_ 6                      _|      _| | | | |_      |_ 7                    _|       |   | | |   |       |_ 8                  _|        _|  _| | |_  |_        |_ 9                _|         |   |  _|_  |   |         |_ 10             _|          _|   | | | | |   |_          |_ 11           _|           |    _| | | | |_    |           |_ 12         _|            _|   |   | | |   |   |_            |_ 13       _|             |     |  _| | |_  |     |             |_ 14     _|              _|    _| |  _|_  | |_    |_              |_ 15   _|               |     |   | | | | |   |     |               |_ 16  |                 |     |   | | | | |   |     |                 | ... The symmetric pattern emerges from the front view of the stepped pyramid. Note that starting from this diagram A000203 is obtained as follows: In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n. The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End) From Omar E. Pol, Dec 31 2016: (Star) Illustration of the top view of the pyramid with 16 levels: . n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1      1   =      1      |_| | | | | | | | | | | | | | | | 2      3   =      3      |_ _|_| | | | | | | | | | | | | | 3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | | 4      7   =      7      |_ _ _|    _|_| | | | | | | | | | 5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | | 6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | | 7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | | 8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| | 9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _| 10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| | 11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _| 12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _| 13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _| 14    24   =   12 + 12   |_ _ _ _ _ _ _ _| | 15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| | 16    31   =     31      |_ _ _ _ _ _ _ _ _| ... (End) MATHEMATICA Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *) Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *) CROSSREFS Cf. A000203, A004125, A024916, A005843, A175254, A196020, A224880, A235791, A236104, A237270, A237271, A237591, A237593, A239050, A239660, A239931-A239934, A243980, A244050, A244360-A244363, A244370, A244371, A244970, A244971, A245093, A261350, A262626, A277437, A279387, A280223, A280295. Sequence in context: A205791 A039696 A076332 * A092601 A162906 A100476 Adjacent sequences:  A245089 A245090 A245091 * A245093 A245094 A245095 KEYWORD nonn AUTHOR Omar E. Pol, Jul 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 07:32 EST 2021. Contains 340214 sequences. (Running on oeis4.)