OFFSET
1,5
COMMENTS
For the construction of this sequence also we can start from A235791.
This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...
Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - Omar E. Pol, Jun 10 2019
LINKS
Robert Price, Table of n, a(n) for n = 1..30016 (rows n = 1..412, flattened)
EXAMPLE
Triangle begins (first 15.5 rows):
1, 1, 1, 1;
2, 2, 2, 2;
2, 1, 1, 2, 2, 1, 1, 2;
3, 1, 1, 3, 3, 1, 1, 3;
3, 2, 2, 3, 3, 2, 2, 3;
4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;
4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;
5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;
5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;
6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;
6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;
7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;
7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;
8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...
.
Illustration of initial terms as an infinite Dyck path (row n = 1..4):
.
. /\/\ /\/\
. /\ /\ /\/\ /\/\ / \ / \
. /\/\/ \/ \/ \/ \/ \/ \
.
.
Illustration of initial terms for the construction of a spiral related to sigma:
.
. row 1 row 2 row 3 row 4
. _ _ _
. |_
. _ _ |
. _ _ | |
. | | | |
. | | | |
. |_ _ |_ _| |
. |_ _ _ _| _|
. _ _ _|
.
.[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]
.
The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.
.
Illustration of the spiral constructed with the first 15.5 rows of triangle:
.
. 12 _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
. | | |_ _ _ _ _ _ _|
. _| | |
. |_ _|9 _ _ _ _ _ _ |_ _
. 12 _ _| | _ _ _ _ _|_ _ _ _ _ 5 |_
. _ _ _| | _| | |_ _ _ _ _| |
. | _ _ _| 9 _|_ _| |_ _ 3 |_ _ _ 7
. | | _ _| | 12 _ _ _ _ |_ | | |
. | | | _ _| _| _ _ _|_ _ _ 3 |_|_ _ 5 | |
. | | | | _| | |_ _ _| | | | |
. | | | | | _ _| |_ _ 3 | | | |
. | | | | | | 3 _ _ | | | | | |
. | | | | | | | _|_ 1 | | | | | |
. _|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _
. | | | | | | | | | | | | | | | |
. | | | | | | |_|_ _ _| | | | | | | |
. | | | | | | 2 |_ _|_ _| _| | | | | | |
. | | | | |_|_ 2 |_ _ _| _ _| | | | | |
. | | | | 4 |_ 7 _| _ _| | | | |
. | | |_|_ _ |_ _ _ _ | _| _ _ _| | | |
. | | 6 |_ |_ _ _ _|_ _ _ _| | _| _ _| | |
. |_|_ _ _ |_ 4 |_ _ _ _ _| _| | _ _ _| |
. 8 | |_ _ | 15| _| | _ _ _|
. |_ | |_ _ _ _ _ _ | _ _| _| |
. 8 |_ |_ |_ _ _ _ _ _|_ _ _ _ _ _| | _| _|
. |_ _| 6 |_ _ _ _ _ _ _| _ _| _|
. | 28| _ _|
. |_ _ _ _ _ _ _ _ | |
. |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
. 8 |_ _ _ _ _ _ _ _ _|
. 31
.
The diagram contains A237590(16) = 27 parts.
The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (checked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...
Diagram extended by Omar E. Pol, Aug 23 2018
CROSSREFS
Row n has length 4*A003056(n).
The sum of row n is equal to 4*n = A008586(n).
Row n is a palindromic composition of 4*n = A008586(n).
Both column 1 and right border are A008619, n >= 1.
The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.
KEYWORD
AUTHOR
Omar E. Pol, Mar 24 2014
STATUS
approved