OFFSET
1,1
COMMENTS
Gives an identity for A239050. Alternating sum of row n equals A239050(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = 4*A000203(n) = 2*A074400(n) = A239050(n).
Note that if T(n,k) = 12 then T(n+1,k+1) = 4, the first element of the column k+1.
The number of positive terms in row n is A001227(n).
For more information see A196020.
Column 1 is A017113. - Omar E. Pol, Apr 17 2016
EXAMPLE
Triangle begins:
4;
12;
20, 4;
28, 0;
36, 12;
44, 0, 4;
52, 20, 0;
60, 0, 0;
68, 28, 12;
76, 0, 0, 4;
84, 36, 0, 0;
92, 0, 20, 0;
100, 44, 0, 0;
108, 0, 0, 12;
116, 52, 28, 0, 4;
124, 0, 0, 0, 0;
132, 60, 0, 0, 0;
140, 0, 36, 20, 0;
148, 68, 0, 0, 0;
156, 0, 0, 0, 12;
164, 76, 44, 0, 0, 4;
172, 0, 0, 28, 0, 0;
180, 84, 0, 0, 0, 0;
188, 0, 52, 0, 0, 0;
...
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Mar 30 2014
STATUS
approved