

A239049


Decimal expansion of Pi*(2/3)^(1/2).


2



2, 5, 6, 5, 0, 9, 9, 6, 6, 0, 3, 2, 3, 7, 2, 8, 1, 9, 1, 0, 8, 8, 0, 7, 2, 7, 1, 9, 3, 4, 2, 0, 1, 2, 8, 2, 2, 9, 3, 4, 5, 2, 1, 3, 3, 5, 1, 2, 8, 1, 8, 4, 6, 4, 6, 2, 0, 2, 7, 7, 9, 2, 1, 3, 5, 1, 2, 7, 9, 7, 6, 4, 7, 0, 2, 6, 0, 4, 4, 2, 0, 2, 0, 6, 6, 5, 7, 3, 8, 3, 8, 1, 0, 4, 7, 8, 8, 8, 8, 1, 4, 9, 0, 3, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Decimal expansion of Pi*6^(1/2)/3.
Constant found in the HardyRamanujan asymptotic formula of the number of partitions of n, for n = 1.
Also constant mentioned in the DeSalvoPak paper, see pages 2, 4, 6.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000
S. DeSalvo, I. Pak, Logconcavity of the partition function, arXiv:1310.7982v1 [math.CO], 20132014.
Steven Finch, Integer Partitions, September 22, 2004. [Cached copy, with permission of the author]


FORMULA

Equals A000796 * A157697.


EXAMPLE

2.5650996603237281910880727193420128229345213351281846...


MAPLE

evalf(Pi*(2/3)^(1/2), 120) # Vaclav Kotesovec, Oct 17 2014


MATHEMATICA

RealDigits[Pi*Sqrt[2/3], 10, 100][[1]] (* G. C. Greubel, Mar 31 2018 *)


PROG

(PARI) Pi*sqrt(2/3) \\ G. C. Greubel, Mar 31 2018
(MAGMA) R:=RealField(); Pi(R)*Sqrt(2/3); // G. C. Greubel, Mar 31 2018


CROSSREFS

Cf. A000796.
Sequence in context: A262152 A016636 A103989 * A161017 A198231 A272207
Adjacent sequences: A239046 A239047 A239048 * A239050 A239051 A239052


KEYWORD

nonn,cons


AUTHOR

Omar E. Pol, Mar 16 2014


EXTENSIONS

More terms from Vaclav Kotesovec, Oct 17 2014


STATUS

approved



