login
A300061
Heinz numbers of integer partitions of even numbers.
97
1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 30, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 66, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 112, 113, 115, 116, 117, 118, 120
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
EXAMPLE
75 is the Heinz number of (3,3,2), which has even weight, so 75 belongs to the sequence.
Sequence of even-weight partitions begins: () (2) (1,1) (4) (2,2) (3,1) (2,1,1) (6) (1,1,1,1) (8) (4,2) (5,1) (3,3) (2,2,2) (4,1,1).
MAPLE
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, 0, a(n-1)) while add(numtheory[pi]
(i[1])*i[2], i=ifactors(k)[2])::odd do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 22 2018
MATHEMATICA
Select[Range[200], EvenQ[Total[Cases[FactorInteger[#], {p_, k_}:>k*PrimePi[p]]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 23 2018
STATUS
approved