This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299202 Moebius function of the multiorder of integer partitions indexed by their Heinz numbers. 28
 0, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 2, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 0, 1, 1, 3, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 0, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 2, 0, -1, 2, 1, 1, -1, 3, 1, 2, 1, -1, 1, 1, -1, 2, 1, 1, -1, -1, 1, -5, -1, -1, -1, -1, 1, -4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS By convention, mu() = 0. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). LINKS Gus Wiseman, Comcategories and Multiorders FORMULA mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all enriched p-trees (A289501, A299203) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t. EXAMPLE Heinz number of (2,1,1) is 12, so mu(2,1,1) = a(12) = 2. MATHEMATICA nn=120; ptns=Table[If[n===1, {}, Join@@Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]], {n, nn}]; tris=Join@@Map[Tuples[IntegerPartitions/@#]&, ptns]; mu[y_]:=mu[y]=If[Length[y]===1, 1, -Sum[Times@@mu/@t, {t, Select[tris, And[Length[#]>1, Sort[Join@@#, Greater]===y]&]}]]; mu/@ptns CROSSREFS Cf. A000041, A063834, A112798, A196545, A273873, A281145, A289501, A290261, A296150, A299200, A299201, A299203. Sequence in context: A194325 A300547 A025452 * A194337 A299912 A329684 Adjacent sequences:  A299199 A299200 A299201 * A299203 A299204 A299205 KEYWORD sign AUTHOR Gus Wiseman, Feb 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 19:22 EST 2019. Contains 329809 sequences. (Running on oeis4.)