OFFSET
1,3
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(prime(n)) = A000041(n).
EXAMPLE
The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
MAPLE
with(numtheory): with(combinat):
a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..82); # Alois P. Heinz, Jan 14 2021
MATHEMATICA
Table[Times@@Cases[FactorInteger[n], {p_, k_}:>PartitionsP[PrimePi[p]]^k], {n, 100}]
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1])); ); factorback(f); } \\ Michel Marcus, Feb 26 2018
CROSSREFS
KEYWORD
AUTHOR
Gus Wiseman, Feb 05 2018
STATUS
approved