login
A299200
Number of twice-partitions whose domain is the integer partition with Heinz number n.
15
1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 15, 4, 22, 3, 10, 7, 30, 2, 9, 11, 8, 5, 42, 6, 56, 1, 14, 15, 15, 4, 77, 22, 22, 3, 101, 10, 135, 7, 12, 30, 176, 2, 25, 9, 30, 11, 231, 8, 21, 5, 44, 42, 297, 6, 385, 56, 20, 1, 33, 14, 490, 15, 60, 15, 627, 4
OFFSET
1,3
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
FORMULA
Multiplicative with a(prime(n)) = A000041(n).
EXAMPLE
The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
MAPLE
with(numtheory): with(combinat):
a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..82); # Alois P. Heinz, Jan 14 2021
MATHEMATICA
Table[Times@@Cases[FactorInteger[n], {p_, k_}:>PartitionsP[PrimePi[p]]^k], {n, 100}]
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1])); ); factorback(f); } \\ Michel Marcus, Feb 26 2018
KEYWORD
nonn,look,mult
AUTHOR
Gus Wiseman, Feb 05 2018
STATUS
approved