OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
If n = Product p(k)^e(k) then a(n) = Product partition(k+1)^e(k).
Sum_{n>=1} 1/a(n) = 1 / Product_{k>=2} (1 - 1/A000041(k)) = 6.16770060042144081793... . - Amiram Eldar, Sep 19 2023
MAPLE
with(numtheory): with(combinat):
a:= n-> mul(numbpart(pi(i[1])+1)^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..82); # Alois P. Heinz, Jan 14 2021
MATHEMATICA
f[p_, e_] := PartitionsP[PrimePi[p] + 1]^e; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1])+1)); factorback(f); \\ Michel Marcus, Jan 14 2021
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Description corrected and sequence extended by David W. Wilson
STATUS
approved