login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289501
Number of enriched p-trees of weight n.
83
1, 1, 2, 4, 12, 32, 112, 352, 1296, 4448, 16640, 59968, 231168, 856960, 3334400, 12679424, 49991424, 192890880, 767229952, 2998427648, 12015527936, 47438950400, 191117033472, 760625733632, 3082675150848, 12346305839104, 50223511928832, 202359539335168
OFFSET
0,3
COMMENTS
An enriched p-tree of weight n is either (case 1) the number n itself, or (case 2) a sequence of two or more enriched p-trees, having a weakly decreasing sequence of weights summing to n.
LINKS
FORMULA
O.g.f.: (1/(1-x) + Product_{i>0} 1/(1-a(i)*x^i))/2.
EXAMPLE
The a(4) = 12 enriched p-trees are:
4,
(31), ((21)1), (((11)1)1), ((111)1),
(22), (2(11)), ((11)2), ((11)(11)),
(211), ((11)11),
(1111).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
end:
a:= n-> `if`(n=0, 1, 1+b(n, n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 07 2017
MATHEMATICA
a[n_]:=a[n]=1+Sum[Times@@a/@y, {y, Rest[IntegerPartitions[n]]}];
Array[a, 20]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1,
If[i<1, 0, b[n, i-1] + a[i] b[n-i, Min[n-i, i]]]];
a[n_] := If[n == 0, 1, 1 + b[n, n-1]];
a /@ Range[0, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 07 2017
STATUS
approved