login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052337
Number of partitions into at most a(1) copies of 1, a(2) copies of 2, ...
2
1, 1, 1, 2, 2, 3, 5, 6, 8, 10, 13, 17, 21, 27, 34, 42, 53, 65, 80, 98, 119, 146, 177, 213, 258, 309, 370, 443, 528, 628, 746, 883, 1044, 1231, 1449, 1703, 1997, 2338, 2734, 3190, 3718, 4325, 5025, 5830, 6754, 7816, 9032, 10422, 12016, 13832, 15907, 18274
OFFSET
0,4
LINKS
FORMULA
E.g.f. satisfies A(x) = Product_{i>=1} (1-x^(a(i)*(i+1)))/(1-x^i).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(n/i, a(i)))))
end:
a:= n-> `if`(n=0, 0, 1)+b(n, n-1):
seq(a(n), n=0..70); # Alois P. Heinz, Jun 12 2018
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1], {j, 0, Min[n/i, a[i]]}]]];
a[n_] := If[n == 0, 0, 1] + b[n, n - 1];
a /@ Range[0, 70] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A289501.
Sequence in context: A135279 A035631 A050046 * A308858 A192432 A121081
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Dec 19 1999
STATUS
approved