login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093637 G.f.: A(x) = Product_{n>=0} 1/(1-a(n)*x^(n+1)) = Sum_{n>=0} a(n)*x^n. 10
1, 1, 2, 4, 9, 20, 49, 117, 297, 746, 1947, 5021, 13378, 35237, 95123, 254825, 694987, 1882707, 5184391, 14177587, 39289183, 108337723, 301997384, 837774846, 2347293253, 6546903307, 18417850843, 51617715836, 145722478875, 409964137081, 1161300892672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From David Callan, Nov 02 2006: (Start)

a(n) = number of (unlabeled, rooted) ordered trees on n edges such that, for each vertex of outdegree >= 1, the sizes of its subtrees are weakly increasing left to right. This notion is close to that of unlabeled, unordered rooted tree (A000081) but, for example,

./\...../\.

|./\.../\.|

|.........|

count as two different trees here whereas A000081 treats them as the same.

(End)

We can also think of a(n) in terms of integer partitions, recursively: Let a(0)=1. For each partition n=p1+p2+p3+...+pr, consider the number q=a(p1-1)*a(p2-1)*...*a(pr-1). Then, summing these q over all the partitions of n gives a(n). - Daniele P. Morelli, May 22 2010

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..2000

FORMULA

G.f. satisfies: A(x) = exp( Sum_{n>=1} Sum_{k>=1} a(k)^n * (x^k)^n /n ). - Paul D. Hanna, Oct 26 2011

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 49*x^6 +...

where

A(x) = 1/((1-x)*(1-x^2)*(1-2*x^3)*(1-4*x^4)*(1-9*x^5)*(1-20*x^6)*(1-49*x^7)...).

MAPLE

b:= proc(n, i) option remember; `if`(i>n, 0,

       a(i-1)*`if`(i=n, 1, b(n-i, i)))+`if`(i>1, b(n, i-1), 0)

    end:

a:= n-> `if`(n=0, 1, b(n, n)):

seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2012

MATHEMATICA

b[n_, i_] := b[n, i] = If[i>n, 0, a[i-1]*If[i == n, 1, b[n-i, i]]] + If[i>1, b[n, i-1], 0]; a[n_] := If[n == 0, 1, b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-Fran├žois Alcover, Jun 15 2015, after Alois P. Heinz *)

PROG

(PARI) {a(n) = polcoeff(prod(i=0, n-1, 1/(1-a(i)*x^(i+1)))+x*O(x^n), n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, 1/m*sum(k=1, n, polcoeff(A+O(x^k), k-1)^m*x^(m*k)) +x*O(x^n)))); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A000081, A093635, A093638.

Sequence in context: A124497 A286983 A289971 * A068051 A032289 A006648

Adjacent sequences:  A093634 A093635 A093636 * A093638 A093639 A093640

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 13:55 EST 2017. Contains 295876 sequences.