login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286983
a(n) is the smallest integer that can appear as the n-th term of two distinct nondecreasing sequences of positive integers that satisfy the Fibonacci recurrence relation.
2
1, 2, 4, 9, 20, 48, 117, 294, 748, 1925, 4984, 12960, 33785, 88218, 230580, 603057, 1577836, 4129232, 10807885, 28291230, 74060636, 193882317, 507572784, 1328814144, 3478834225, 9107631218, 23843966692, 62424118809, 163428146948, 427859929200, 1120151005029, 2932592057430
OFFSET
1,2
FORMULA
a(n) = F(n)*(1 + F(n-1)) where F = A000045 (the Fibonacci sequence).
From Colin Barker, May 18 2017: (Start)
G.f.: x*(1 - x - 3*x^2) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
F(4) = 9 since 1, 4, 5, 9 and 3, 3, 6, 9 are the first four terms of distinct nondecreasing sequences of positive integers that satisfy the Fibonacci recurrence relation and there are not two such sequences that have a number less than 9 as their 4th term.
MATHEMATICA
LinearRecurrence[{3, 1, -5, -1, 1}, {1, 2, 4, 9, 20}, 32] (* or *)
Rest@ CoefficientList[Series[x (1 - x - 3 x^2)/((1 + x) (1 - 3 x + x^2) (1 - x - x^2)), {x, 0, 32}], x] (* Michael De Vlieger, May 18 2017 *)
PROG
(PARI) Vec(x*(1 - x - 3*x^2) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, May 18 2017
CROSSREFS
Cf. A000045.
Sequence in context: A000081 A124497 A375439 * A289971 A093637 A068051
KEYWORD
easy,nonn
AUTHOR
Milena Harned, May 17 2017
STATUS
approved