

A286980


Binomial coefficients binomial(n,k) = uv such that n>=2k and u > v, where gpf(u) < k, gpf(v) >= k (gpf(n)= is the greatest prime factor of n).


1



56, 126, 252, 792, 116280, 203490, 2035800, 573166440, 818809200, 2310789600, 8597496600, 1889912732400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The corresponding pairs (n,k) are: (8,3), (9,4), (10,5), (12,5), (21,7), (21,8), (30,7), (33,13), (33,14), (36,13), (36,17), (56,13).
Subsequence of A286981.


LINKS

Table of n, a(n) for n=1..12.
Earl F. Ecklund, Jr., Roger B. Eggleton, Paul ErdÅ‘s and John L. Selfridge, On the prime factorization of binomial coefficients, Journal of the Australian Mathematical Society (Series A), Vol. 26, No. 3 (1978), pp. 257269.


EXAMPLE

56 = Binomial(8,3) = 8*7, gpf(8) = 2 < 3 and gpf(7) = 7 >= 3, and 8 > 7, thus 56 is in the sequence.


CROSSREFS

Cf. A007318, A286981.
Sequence in context: A157330 A038849 A003781 * A254463 A030443 A135803
Adjacent sequences: A286977 A286978 A286979 * A286981 A286982 A286983


KEYWORD

nonn,fini,full


AUTHOR

Amiram Eldar, May 17 2017


STATUS

approved



