login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030443
Nonzero coefficients in theta series of {E_7}* lattice.
1
1, 56, 126, 576, 756, 1512, 2072, 4032, 4158, 5544, 7560, 12096, 11592, 13664, 16704, 24192, 24948, 27216, 31878, 44352, 39816, 41832, 55944, 72576, 66584, 67536, 76104, 100800, 99792, 101304, 116928, 145728, 133182, 126504, 160272, 205632, 177660, 176456, 205128, 249984, 249480, 234360
OFFSET
0,2
COMMENTS
In the Eichler and Zagier reference this is e_4(A014601(n)), n >= 0, (p. 141), where e_4 is obtained from e_{4,1}(n,r), eq. (7), p. 22, depending only on 4*n-r^2 >= 0 (for integers n and r), i.e. on A014601(n), n >= 0 (with a new notation for n). - Wolfdieter Lang, Jan 08 2016
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125.
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhäuser, 1985, p. 141.
LINKS
N. Elkies and B. H. Gross, Embeddings into the integral octonions, Olga Taussky-Todd: in memoriam, Pacific J. Math. 1997, Special Issue, 147-158.
PROG
(PARI) f(n) = local(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A^3 * (A^4 + 7 * subst(A, x, -x)^4) / 8, n)); \\ A003781
lista(nn) = select(x->(x>0), vector(nn, k, f(k-1))); \\ Michel Marcus, Nov 11 2023
CROSSREFS
Cf. A003781.
Sequence in context: A003781 A286980 A254463 * A135803 A048452 A306935
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Nov 11 2023
STATUS
approved