OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Colin Barker, May 18 2014
G.f.: -(386*x^4-1136*x^3+1361*x^2-758*x+163) / (x-1)^5. - Colin Barker, May 18 2014
a(n) = A059259(2*n-5,4), n>4. - Mathew Englander, May 18 2014
E.g.f.: exp(x)*(978 - 636*x + 195*x^2 - 36*x^3 + 4*x^4)/6. - Stefano Spezia, Sep 11 2022
MAPLE
A030442:=n->(1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); seq(A030442(n), n=0..40); # Wesley Ivan Hurt, May 19 2014
MATHEMATICA
Table[(1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978), {n, 0, 40}] (* Wesley Ivan Hurt, May 19 2014 *)
PROG
(PARI) a(n) = (1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); \\ Michel Marcus, May 18 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas), Dec 11 1999
STATUS
approved