login
A030442
Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).
1
163, 57, 16, 4, 1, 3, 22, 86, 239, 541, 1068, 1912, 3181, 4999, 7506, 10858, 15227, 20801, 27784, 36396, 46873, 59467, 74446, 92094, 112711, 136613, 164132, 195616, 231429, 271951, 317578, 368722, 425811, 489289, 559616, 637268, 722737, 816531, 919174
OFFSET
0,1
FORMULA
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Colin Barker, May 18 2014
G.f.: -(386*x^4-1136*x^3+1361*x^2-758*x+163) / (x-1)^5. - Colin Barker, May 18 2014
a(n) = A059259(2*n-5,4), n>4. - Mathew Englander, May 18 2014
E.g.f.: exp(x)*(978 - 636*x + 195*x^2 - 36*x^3 + 4*x^4)/6. - Stefano Spezia, Sep 11 2022
MAPLE
A030442:=n->(1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); seq(A030442(n), n=0..40); # Wesley Ivan Hurt, May 19 2014
MATHEMATICA
Table[(1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978), {n, 0, 40}] (* Wesley Ivan Hurt, May 19 2014 *)
PROG
(PARI) a(n) = (1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); \\ Michel Marcus, May 18 2014
CROSSREFS
Cf. A059259.
Sequence in context: A214185 A214236 A349511 * A061574 A185444 A217546
KEYWORD
nonn,easy
AUTHOR
Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas), Dec 11 1999
STATUS
approved