This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286986 Number of connected dominating sets in the n-antiprism graph. 0
 3, 15, 54, 175, 543, 1642, 4875, 14271, 41310, 118487, 337263, 953810, 2682579, 7508655, 20929158, 58121407, 160877055, 443993146, 1222110555, 3355879647, 9195143598, 25144855655, 68635721679, 187035899810, 508896450723, 1382653280847, 3751638404310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Eric Weisstein's World of Mathematics, Antiprism Graph Eric Weisstein's World of Mathematics, Connected Dominating Set Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1). FORMULA From G. C. Greubel, May 17 2017: (Start) a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). G.f.: (3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4). (End) MATHEMATICA Table[6 n ChebyshevU[n - 1, 3/2] + (1 - 2 n) LucasL[2 n], {n, 30}] (* Eric W. Weisstein, May 17 2017 *) LinearRecurrence[{6, -11, 6, -1}, {3, 15, 54, 175}, 30] (* Eric W. Weisstein, May 17 2017 *) Rest[CoefficientList[Series[(3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4), {x, 0, 50}], x]] (* G. C. Greubel, May 17 2017 *) PROG (PARI) x='x+O('x^50); Vec((3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4)) \\ G. C. Greubel, May 17 2017 CROSSREFS Sequence in context: A298178 A147618 A290764 * A261565 A085480 A265974 Adjacent sequences:  A286983 A286984 A286985 * A286987 A286988 A286989 KEYWORD nonn AUTHOR Eric W. Weisstein, May 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 10:30 EST 2019. Contains 319218 sequences. (Running on oeis4.)