|
|
A001871
|
|
Expansion of 1/(1 - 3*x + x^2)^2.
(Formerly M4166 N1733)
|
|
23
|
|
|
1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, 221016, 632916, 1799125, 5082270, 14279725, 39935214, 111228804, 308681550, 853904015, 2355364650, 6480104231, 17786356776, 48715278000, 133167004200, 363372003625, 989900286774
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Convolution of A001906(n), n >= 1 (even-indexed Fibonacci numbers) with itself.
A001787 and this sequence arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for A001787 and k = 4 for this sequence.
Gives the number of 3412-avoiding permutations containing exactly one subsequence of type 321. - Dan Daly (ddaly(AT)du.edu), Apr 24 2008
|
|
REFERENCES
|
Rigoberto Flórez, Leandro Junes, José L. Ramírez, Enumerating several aspects of non-decreasing Dyck paths, Discrete Mathematics (2019) Vol. 342, Issue 11, 3079-3097. See page 3092.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2*(2*n+1)*F(2*(n+1))+3*(n+1)*F(2*n+1))/5 with F(n) = A000045 (Fibonacci numbers).
a(n) = -a(-4-n) = ((4n+2)F(2n) + (7n+5)F(2n+1))/5 with F(n) = A000045 (Fibonacci numbers).
a(n) = (2*a(n-1) + (n+1)*F(2n+4))/3, where F(n) = A000045 (Fibonacci numbers). - Emeric Deutsch, Oct 08 2002
G.f.: 1/(1 - 3*x + x^2)^2.
a(n) = (Sum_{k=0..n} S(k, 3)S(n-k, 3)) S(n, x) = U(n, x/2) Chebyshev polynomials of 2nd kind, A049310. - Paul Barry, Nov 14 2003
a(n) = Sum_{k=1..n+1} F(2k)*F(2(n-k+2)) where F(k) is the k-th Fibonacci number. - Dan Daly (ddaly(AT)du.edu), Apr 24 2008
a(n) ~ (7 + 3*sqrt(5))*n*cos(n*arccos(3/2))/5. - Stefano Spezia, Mar 29 2022
|
|
MAPLE
|
f:= gfun:-rectoproc({a(n)=6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4),
a(0)=1, a(1)=6, a(2)=25, a(3)=90}, a(n), remember):
|
|
MATHEMATICA
|
CoefficientList[Series[1/(1-3x+x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 10 2012 *)
|
|
PROG
|
(PARI) a(n)=((4*n+2)*fibonacci(2*n)+(7*n+5)*fibonacci(2*n+1))/5
(Magma) I:=[1, 6, 25, 90]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
(PARI) Vec(1/(1-3*x+x^2)^2 + O(x^100)) \\ Altug Alkan, Oct 31 2015
|
|
CROSSREFS
|
Partial sums of A001870 (one half of odd-indexed A001629(n), n >= 2, Fibonacci convolution).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|