The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001873 Convolved Fibonacci numbers. (Formerly M3899 N1600) 12
 1, 5, 20, 65, 190, 511, 1295, 3130, 7285, 16435, 36122, 77645, 163730, 339535, 693835, 1399478, 2790100, 5504650, 10758050, 20845300, 40075630, 76495450, 145052300, 273381350, 512347975, 955187033, 1772132390, 3272875935, 6018885570, 11024814945, 20118711993 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = (((-i)^n)/4!)*(d^4/dx^4)S(n+4,x)|_{x=i}, where i is the imaginary unit. Fourth derivative of Chebyshev S(n+4,x) polynomial evaluated at x=i multiplied by ((-i)^n)/4!. See A049310 for the S-polynomials. - Wolfdieter Lang, Apr 04 2007 a(n) = number of weak compositions of n in which exactly 4 parts are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..500 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. V. E. Hoggatt, Jr. and M. Bicknell-Johnson, Fibonacci convolution sequences, Fib. Quart., 15 (1977), 117-122. P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003. P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272. P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers [Corrected annotated scanned copy] M. S. Waterman, Home Page (contains copies of his papers) Index entries for linear recurrences with constant coefficients, signature (5,-5,-10,15,11,-15,-10,5,5,1). FORMULA G.f.: 1/(1-x-x^2)^5. From Wolfdieter Lang, Nov 29 2002: (Start) a(n) = Sum_{m=0.. floor(n/2)} binomial(4+n-m, 4)*binomial(n-m, m). a(n) = ((1368 + 970*n + 215*n^2 + 15*n^3)*(n+1)*F(n+2) + 2*(408 + 305*n + 70*n^2 + 5*n^3)*(n+2)*F(n+1))/(4!*5^3), with F(n) = A000045(n). (End) a(n) = F''''(n+4, 1)/24, i.e., 1/24 times the 4th derivative of the (n+4)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006 Recurrence: a(n) = 5*a(n-1) - 5*a(n-2) - 10*a(n-3) + 15*a(n-4) + 11*a(n-5) - 15*a(n-6) - 10*a(n-7) + 5*a(n-8) + 5*a(n-9) + a(n-10). - Fung Lam, May 11 2014 For n > 1, a(n) = (4/n+1)*a(n-1)+(8/n+1)*a(n-2). - Tani Akinari, Sep 14 2023 MAPLE a:= n-> (Matrix(10, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [5, -5, -10, 15, 11, -15, -10, 5, 5, 1][i], 0 )))^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 15 2008 MATHEMATICA nn = 30; CoefficientList[Series[1/(1 - x - x^2)^5, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *) LinearRecurrence[{5, -5, -10, 15, 11, -15, -10, 5, 5, 1}, {1, 5, 20, 65, 190, 511, 1295, 3130, 7285, 16435}, 40] (* Harvey P. Dale, Aug 10 2021 *) PROG (Maxima) a[n]:=if n<2 then 4*n+1 else (4/n+1)*a[n-1]+(8/n+1)*a[n-2]; makelist(a[n], n, 0, 50); /* Tani Akinari, Sep 14 2023 */ CROSSREFS Sequence in context: A277212 A160528 A023004 * A120297 A271066 A271599 Adjacent sequences: A001870 A001871 A001872 * A001874 A001875 A001876 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS More terms from Wolfdieter Lang, Nov 29 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 07:37 EST 2023. Contains 367510 sequences. (Running on oeis4.)