OFFSET
0,2
COMMENTS
a(n-2) is the coefficient of x^3 in Product_{k=0..n} (x + k^2).
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
Takao Komatsu, Convolution identities of poly-Cauchy numbers with level 2, arXiv:2003.12926 [math.NT], 2020.
Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
FORMULA
a(n) = s(n+3,3)^2 - 2*s(n+3,2)*s(n+3,4) + 2*s(n+3,1)*s(n+3,5), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = (3*n^2 + 6*n + 5)*a(n-1) - (n^2 + n + 1)*(3*n^2 + 3*n + 1)*a(n-2) + n^6*a(n-3). - Vaclav Kotesovec, Feb 23 2015
a(n) ~ Pi^5 * n^(2*n+5) / (60 * exp(2*n)). - Vaclav Kotesovec, Feb 23 2015
MAPLE
seq(2*Stirling1(n+3, 1)*Stirling1(n+3, 5)-2*Stirling1(n+3, 2)*Stirling1(n+3, 4)+Stirling1(n+3, 3)^2, n=0..20); # Mircea Merca, Apr 03 2012
MATHEMATICA
Table[StirlingS1[n+3, 3]^2 - 2*StirlingS1[n+3, 2]*StirlingS1[n+3, 4] + 2*StirlingS1[n+3, 1]*StirlingS1[n+3, 5], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved