login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215544
Number of standard Young tableaux of shape [4n,4].
2
0, 14, 275, 1260, 3705, 8602, 17199, 31000, 51765, 81510, 122507, 177284, 248625, 339570, 453415, 593712, 764269, 969150, 1212675, 1499420, 1834217, 2222154, 2668575, 3179080, 3759525, 4416022, 5154939, 5982900, 6906785, 7933730, 9071127, 10326624, 11708125
OFFSET
0,2
COMMENTS
Also the number of binary words with 4n 1's and 4 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 14 words are: 10101010, 10101100, 10110010, 10110100, 10111000, 11001010, 11001100, 11010010, 11010100, 11011000, 11100010, 11100100, 11101000, 11110000.
FORMULA
G.f.: (3*x^4-15*x^3-25*x^2-205*x-14)*x/(x-1)^5.
a(n) = (4*n-3)*(4*n+3)*(2*n+1)*(n+1)/3 for n>0, a(0) = 0.
MAPLE
a:= n-> max(0, (4*n+3)*(2*n+1)*(4*n-3)*(n+1)/3):
seq(a(n), n=0..40);
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 14, 275, 1260, 3705, 8602}, 40] (* Harvey P. Dale, Jan 25 2024 *)
PROG
(PARI) a(n)=max((4*n-3)*(4*n+3)*(2*n+1)*(n+1)/3, 0) \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Row n=4 of A214776.
Sequence in context: A048668 A001820 A211900 * A205353 A279113 A291099
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 15 2012
STATUS
approved